O ®

Brandenburg University of Chair of programming languages and
Technology compiler construction

Diploma thesis

Designing, implementing and integrating
a structured C# code editor

Kirill Osenkov

kirill{@osenkov.com

Advisor: Prof. Dr. rer. nat. habil. Peter Bachmann
Co-Examiner: Prof. Dr. rer. nat. Claus Lewerentz
CR-Classification: D.2.3,D.2.6

June 1, 2007

Eidesstattliche Erklarung

Hiermit versichere ich, dass ich die vorliegendpl@narbeit selbstéandig angefertigt habe.
Die verwendeten Hilfsmittel und Quellen sind im draturverzeichnis vollstandig

aufgefuhrt. Diese Arbeit hat in gleicher oder &iméir Form noch keiner Prifungsbehdrde
vorgelegen. Eingetragene Warenzeichen und Copygrigbtden anerkannt, auch wenn sie

nicht explizit gekennzeichnet sind.

1. Juni 2007

Cottbus

Abstract

Programs are represented as text by most codeasdituctured editors, on the contrary,
directly display the parse tree of a program aseealchy of embedded blocks. This way
the visual layout illustrates the structure of gregram and allows for atomic operations
on language constructs. The structured editor detgelopers avoid syntax errors and
concentrate on the meaning of the program instééatmatting.

In the scope of this thesis, an experimental sirect editor is created for a subset of C#
1.0. It is integrated into the SharpDevelop IDEaasadd-in and supports language-aware
code completion. The implementation of the edittdET) is based on a framework
specifically designed for building structured edstoThe framework, the editor and the
integration add-in are all documented together \hign architecture and implementation

details.

Zusammenfassung

Programme werden in den meisten QuelltexteditotenText reprasentiert. Strukturierte
Editoren stellen dagegen den Syntaxbaum des Proggarsuell als eine Hierarchie der
geschachtelten Blocke dar. Das Layout hilft dadi, Struktur des Programms besser zu
visualisieren und atomare Operationen bequem duféheen. Ein strukturierter Editor
hilft Syntaxfehler zu vermeiden und lasst den Edklar auf dem Inhalt statt

Formattierung zu konzentrieren.

In Rahmen dieser Diplomarbeit wird ein experimdatektrukturierter Editor fir eine
Teilmenge von C# 1.0 entworfen und implementiedr Bditor ist mit der SharpDevelop
Entwicklungsumgebung integriert und bietet kontastbrte Code-Vervollstandigung. Die
Implementierung des Editors (.NET) beruht auf eingemerischen Framework zur
Entwicklung von strukturierten Editoren. Das Framewy der Editor und die Integration
mit der Entwicklungsumgebung sowie die Architektund Implementierungsdetails

werden in dieser Arbeit dokumentiert.

Acknowledgements

| would like to thank Professor Dr. Peter Bachmdon initiating and supporting this

research. It was an enjoyment to work with suclbadgadvisor on such an interesting
project. I'd also like to thank Professor Dr. Clduesverentz for being a co-examiner of the
thesis. Many thanks go to fellow students and ésewith whom we worked together on

the structured editor framework.

I'm endlessly grateful to my wonderful mom. Thanéuyfor your love and for always
being there for me!

Last, but not least, | thank my amazing girlfrieviidda, for inspiring me and making me

happy!

Kirill Osenkov

June 1, 2007

Cottbus, Germany

Contents:

RO 5 L0 L 1 []\ 7
1. 1. TEXT VS. STRUCTURED EDITORS. ...uuttutittiititteiteetsstestestsstsesnstnttsneetstsneesette et eetaetseraaeaseans 7
1.2.INTEGRATION OF AN EDITOR WITH THEIDEcoeniiiiiii et e e e e 8
1.3.PRINCIPLES OF PLAIN TEXT EDITORS. ...tuuttttuteitueteteeeeteseaaeeseteeesasesasaesaseesaneesasesaaeertnseeeneeeans 9.
1.4.PRINCIPLES OF STRUCTURED EDITORSuutittiiiettettteeetneeeaneestaeeeassesssesetneeestsssenaesereerenesrsnaesens 17
1.5.DISADVANTAGES AND POSSIBLE DIFFICULTIES .. ceuutiituneeitieeetnieeeteeetneeeesnsessaserstessenesssneesssaeeranaees 25

2. EXISTING RESEARCH. ...ttt ettt e et e e e e e e s et e e sate e e saa e s st e e sataeananseas 29
pZa N e 11 0] = 3 2 29
2.2 INTENTIONAL PROGRAMMINGctttittittittettestttesteetnessneesaessaassa s ettt tt s st e et ssttestassasssteerrasssnrees 31
R TN = 1 =T = N EST 1Y s T 32
2.4 . THE SYNTHESIZER GENERATORcetttittuneettteeetetesaaeesteeeeta s eesanesetaeeeeteseaaessteeestaeeeanaessreeenanss 33
2.5.OTHER IMPLEMENTATIONS ...uutittteett ettt eeeteeeat e eeaee s et e seeaa e s aanee st seeanseesanseetaeesnnssesnseranneerannnes 33
B2 S U Y 1 7Y = 34

3. FUNCTIONALITY OF THE STRUCTURED EDITOR ..ot e 35
3.1.CREATING A PROGRAM.....itttiititt ittt iett st eta et ettt e et et e et sttt e st s et stb s et set e et ssasetessasransesnestnsranns 36
3.2.NAMESPACE MEMBER DECLARATIONS .. cuuituittniiteitettsttettsetestessssssesnsstnetaneetestsesasstaernssnseens 39
R 7= =N o) (ol .Y oY 10 LT 41
3.4 ACCESS MODIFIERS. ..ttt ttuiite ittt et et ettt et e et st s ea et ta e s e e et et aa e et e st s e e s et s e b s eassbn e eaa e setesnesnsenss 42
3.5.CLASS AND STRUCT MEMBERScuutiitueittnieetteteteeeeteeeaa et it aeraa e s et e saaeeetateesasestaeeerneerrsasreen 44
R TS N 1 =11 1= ST 47
3.7 . CONTROL STRUCTURES. ... cetttittteett e et e et e et e e eeaeesaaaeesat e e s e e s et e e e an e esan e saaeeraneesansestnaeenrnnns 48
I T G0 Y 1LY 1= T 49
SR R Oo]n] =N ole] V] =TH =y 1T T 50

L = (O o | I O I TN 51
4.1 . THE EDITOR FRAMEWORK ...uuiitiiiteiteeteeit et e et s et eeae s st s s s e st e s b s et s e b s eaesb s sa s st esbssassbnsennssnsens 51
2 i 53
G TR 7Y N LY 7N N 54
R 0] =T 1S T 54
TR 0] = 55
4.6.IMPLEMENTATION OF THE CH EDITOR ...tutittiitiiit ittt ettt e st e st et e ssssaa e s saasean st s sanseanssbaeransernerans 56

LT =1 O 101 1 T 58
DL DATA STRUCTURE. ..t u ittt ittt ettt et et s et et e et s sa e e s e s aa e aa e et s s b s e b s et s sa s st s ebassbaseaneesassbnseanssbnsens 58
ST I 1= 0] 2Ty T4 1 0] P 60
5.3.OPERATIONS ON THE DATA STRUCTUREuuuiittnieitteieteeeeteeeaneessteesaaaseesanesaanseetaeestnaersnasestaeernnnns 62
LI O] N 7Y [=12 57 1 63
LTS (0 1 1 1 = 0 T 65

5.6.HCONTAINERBLOCK, VCONTAINERBLOCKuuuiiiiiiiiiiiiiieieetee e et e e e e e e e e s e et e et e e e aeeeeaaeaeaaaas 65

5.7 . LINEARCONTAINERBLOCK ...uuiiitiieiit et ee e e e et e e e e e e et e e et e e e et e e et e e e et e e saaeeean e ssanserenaesennnns 66
oI T I Qi =100 q =T e T 67
5.9. TEXTBOXBLOCKWITHCOMPLETIONuiiiuuiitteeieneeeaeestaeeeetneeesaneeeesesessaeseaneeeteessnaesssneerenseesnnaesenn 68
LSRR KO TN =T =T =] Lo N 69
DL L L UNIVERSALBLOCK ..ttt iitit et ettt et e et e e e e et e et e et eab e e eae e st e e et e e st e s aa e e saessasesa s et e sbnseansatanen 70
LSRR 2 = 10 i 0] N =11 P 70
LT R 1Y 1= 17 = 110 L1 - 71
6. IMPLEMENTATION OF THE FUNCTIONALITY oot e eena e 74
6.1.DESIGNING THE USER INTERFACEcttuutiitteeettieetieeeteeesaeeetseeata s sanesetaaeeeteeeanaessreerenseesnnnraes 74
(T2 o T U T 75
6.3.EVENTS AND USER INTERACTION . ..eutitttueeitteeetnteeeueestaeessaneessaaseeasasesnnssesnaeeeseeesnessreereneessnnsees 78
SR o] = 81
(SRR T OT0] N1 12T 15 87
B.6.VISIBILITY CONDITIONS. .. cuuittuiitntitetteetetteete sttt eeteessssasesa st ean et tan ettt ean st etasssnsasnessnessnenns 89
7. IMPLEMENTING THE CH# EDITOR ...cuiie ettt e e e e e e e e s e e st e e naneas 91
7. L. THE PROJECT STRUCTURE ... cttutetteeeiteeeetee et e st eeeea e e e st ee s st e e saa e e st e et seeta e e sanseeanserannsersnneeeen 91
7.2.DEFINING DATA STRUCTURESBLOCKS) .1ieeeetiiiesieisieitnnttsteseeeeeerseeaaaeaaasaaaaasssesssssssassnsssnssssnnssreeeeenes 92
AR D 2N XY (o2 = I R 100
T A LANGUAGESERVICE. ... ccuuiittteete e et e et e et e e et e e e ee st ee e et e e eaa e e et e e eaa e e et e s taeesaasaeennsserneenrnns 100
7.5.CLASSNAVIGATOR ALGORITHMS .. ctuiitiiiteiteitietteestesettesaessaeesnessaasanseteet e st sstesaessssesnessnessnerns 101
7.6.STAND-ALONE EDITOR WINDOWuuituitnianetnettntetnettnetaneetettseessessesnessnsssneesnessneesnesrersnestnersnn. 103
8. INTEGRATING INTO SHARPDEVELOPttt e e r e e a e 105
8.1. THE SHARPDEVELOPIDE ... oottt emre e e e e e e e e e e e e e st e e eaa e s s e enaneeeanas 105
LI N = Tt T (o 0= =N 106
8.3. SHARPDEVELOP ADD N .. ceuuietneittteetieeeetaeeeeaeseaeeee s s sesaaeseaaeseteeeanesaaneesesseeanessnssenanaeeranees 110
SR (@ 18N o o =] 1= = TN 113
8.5.IMPLEMENTATION OF THE ADD N ...uuiuniitniitneitetieetettesasssestsssassss et essneesn st eransesestersasssaeres 115
SIS O] =N ole] Y =TH =y 1T N N 119
LSS U 1LY 1Y AN = T 221
0. 1. FUTURE RESEARCH DIRECTIONS .. .tutittitttttittttetnttntransesntssnesatssteetassteetessstssteeetesstiesneesnsssnnees 123
9.2.DRAWBACKS OF THE CURRENT IMPLEMENTATION .. .ccuueitueeetieeeeaesetneeseteeesnessansessneeranessnneesenss 125
O TR = = NN L 127
L1, LIST OF FIGURES ..ot et e et e e e e e e e e e e e e e e e e e et e e eabseeaaeestneerenanees 131

1. Introduction

1.1.Text vs. structured editors

Most developers currently use text-based editorsdiv source code. These editors are
highly specialized and integrated into an D& provide a comfortable editing experience.
An IDE typically provides many helpful features Buas background compiling, code

completion, snippets, navigation, refactoring, cghng etc.

But at the ground level, to edit the program theettgper still deals with characters and
lines of text. The hierarchical structure of a peog is represented with the help of
specialized markup tokens and indentation to delamguage constructs. For example, C-
family languages use the curly braces { and }, XMdées tag pairs <X> and </X> and

VB.NET useXeyword —End Keyword pairs.

Internally a program is represented by a hieraadhstructure called a parse tree or an
AST?. It is being recovered from the source text usirsganner and a parser. The AST can
be visually displayed using embedded blocksstrictured editor (also structure editor)

allows the user to interact with the syntax treedly by interacting with these blocks.

' IDE = Integrated Development Environment

2 AST = Abstract Syntax Tree

Language constructs are the new editor “atomstpimtrast to characters and lines of text.

Thus a round-tripping from text to AST and backimmecessary.

Note on terminology: some empiric web-research reagaled that the term
»Structure editor” is more used in the context of chemistry and dmgl to
denote editors for molecular and cell structures. tde contrary, the term
»Structured editor” is more often used in the context of editing doemts (for
example, in [Amaya]) and that is why it is prefeligeused in this thesis.

We'll use the ternplain text editors, traditional editors or simplytext editors to
denote the currently widespread approach of edjiiogram as text.

Such a tree-based representation can provide ndwantages. The advantages are two-
fold: advantages for the user of the editor (maditireg comfort and improved usability
through language-awareness), as well as advantagése developers of the IDE (more

consistent, robust and extensible architectureutitronodel-view-controller approach).

Wesner Moise envisions in [WesnerM1] 2004 the dgwalent of a structured alternative

to plain text editors:

“Text editors are going to go away (for source caihat is)! Don't get me
wrong, source code will still be in text files. Hever, future code editors will
parse the code directly from the text file and vl displayed in a concise,
graphical and nicely presented view with each efgrnrethe view representing
a parse tree node.”

However, this thesis supports a vision where siinect editors won't fully replace text

editors, but rather complement text editors asayetther view on the same internal code
model, to supplement richer and more intelligentimgl experience where possible. It is
important to note that the language underneath irsrthe same: it's all about a new

representation of same old language constructs.

1.2.Integration of an editor with the IDE

We’'ll talk about editors in the context of a tydidBE. For this purpose let's divide the

architecture of a typical (not every!) IDE into logl layers (tiers):

A\ 4

A 4

Front-end Core Back-end

A
A

Figure 1 — layered architecture of an IDE

Let’'s call the part which is closest to the usdramt-end — the user interface, the editor
surface and the documents. A front-end is usuallit bpon some application framework
— a complex Ul library which provides hosting witH elements (dock panels, menus,

toolbars, document windows, etc).

Although theback-end normally consists of many different components, rtain part of it
is of course the compiler. A back-end also usuatjudes a debugger, a storage system

(file-based or version control) etc.

For our purposes, we'll call the mediating part¢hee. The core binds together all parts of
the IDE, in particular, it connects the compilerthe user interface. An important part of
the core is théanguage service, which allows the IDE to “understand” the code ardch
makes the IDE “intelligent”: the DOM the parser, the code colorizer, the resolver, the
background compiler, the project system etc. The ecpakes the text editdanguage-
aware, because the feedback provided to the user islh@s¢he syntax and semantics of

the programming language as well as knowledge abeytrogram being edited.

1.3. Principles of plain text editors

1.3.1.Text data structure

The main abstraction behind a text editor is aastr@f characters or a sequence of text
lines. This abstraction is widely used in the frentd and in the core to work with
programs as text files. The API interface of thé&oedcontrol only works with text and

does not “know” about the AST.

! DOM = Document Object Model

In the core, two principal data structures arerinti@ed together: the text data structure
and the AST. The AST is mostly being used by tinguage service.

Interestingly enough, although the core “knows” @ihie AST, the interface between the
core and the back-end is still based on text inyriBs. The back-end (e.g. a compiler)

acts as a black-box:

Source-code as plain teft T Status and errc

Compiler as a black-box

l

Binaries

Figure 2 - compiler as a black-box for the IDE

The interface of the compiler doesn’t provide “kregge” about the internal AST data
structure: plain text goes in, is internally parsatb a private AST and binaries are

generated.

This black-box isn’t extensible. There is no po#itybfor the user to intercept the process
of compilation and to gain access to the intern&ll Aof the compiler. There are a number
of scenarios, where a dramatic increase of podbilin the direction of meta-
programming and generative programming would besiptes if only one could have
access and work with the compiler’s data structdresg the compilation. One could use
it for intelligent preprocessing, custom languaggersions, code injection, AGRetc.
Vendors that provide IDE extensions are often forcerewrite huge parts of the compiler
functionality which otherwise could have been exgubas a clean compiler API operating

on the “live” AST structure.

It is also characteristic to all text editors iattkhe text editor acts like a black-box as well.
The current program is being presented to the @swt,the user is carrying out actions,
which the core is totally unaware of. The meanirfgtlee user’s changes is being

completely lost at the very moment when the chasgeade and only reconstructed with a

! AOP = Aspect Oriented Programming

10

lot of effort from the background compiler. Baslgathe core has to re-parse with every
user edit, because it has no knowledge about teatifthe meaning) of the user change.
The user could even replace the entire programimeatsingle action, and only a full re-

parse can reconstruct the knowledge about the gmagr

text out

Text editor IDE Core

A

A 4

text in
()

) O

Has to recreate the

meaning each time by
reparsing

The core doesn’t possess
knowledge about the meaning
of the user’s changes.

“event horizon” for the knowledge about the program

Figure 3 — the editor as a black-box for the IDE

This is the “black hole” of plain text — anythingrc happen out there and the parser
doesn’t have any idea. The IDE doesn’'t know whaipeas to the code between the
parsings. This knowledge is lost and found evemeti The reparse algorithms can get
incredibly complex, when an incremental backgrowunpiler is used. In this case,
changes are tracked atrtificially, by recalculatdejta differences each time between two
known text states or by differentiating “destruetiws. “harmless” edits (if a reparse is

necessary).

It is noteworthy, however, that the decoupling andapsulation of the text editor and the
compiler from the IDE might provide certain fleXity with regard to the implementation
— one could change the language (the compiler)onttichanging the interface that binds
the compiler to the outside world. However, as sasnone needs to expose compiler
functionality to the rest of the IDE (for examplet the purposes of the language service —
intelligent code completion etc.), this observatio® not valid anymore — the
implementation of the language service has to @ ke sync with all changes to the

compiler, regardless if the interface to the coempthanges or not.

11

1.3.2.Advantages of text editors

The “black-box nature” is at the same time an intgoaradvantage of all text editors — it
gives the user full flexibility and freedom to maébsolutely any changes to the text, in
any order, not bound by any semantical constraiftss allows for intermediate editing
states where the program is incorrect. In manyscase easier to bring the program into a
temporary incorrect state to reach the desiredecobrstate. A prominent example for
incorrect intermediate states is transforming

inti=0;
i=42;

into
inti=42;

by placing the caret at the beginning of the sedoreland pressing [Backspace] several

times. At some point the code snippet will looketik
inti=0i=42;
which is incorrect, but fully OK as long as thiglearemains within the editor.

As the editor control is decoupled from the resttted IDE using a generic language-
agnostic APl surface, it becomes easy to implemeeneric, flexible and almost

universally usable.

Text editors allow for editing programs pretty fasio. Editing speed is an important
advantage of text mode, to which programmers aesl.ult is crucial to preserve this

advantage to let users benefit from this.

Another implicit advantage of text editors is faiamity. Text editors are something all
developers use all the time during coding, and tbgey used to it very well. For a
programmer, there is basically no need to learn toouse the editor, once a new language
or environment comes out. Moreover, text editors actually very effective, so many
developers are actually totally pleased with théiregl experience and don’t have any
complaints. This, and the fact that text editors so widespread, will probably be the

reason, why structured editors never fully replmog editors.

12

1.3.3.Usability problems of text editors

However the flexibility of text editors comes apmce — the users have to take care of the
syntax and formatting. They have to help the editorconvert the program into an
intermediate representation by manually separdinguage constructs with separators
like ‘{", ;’, ‘(", ‘/'. Even if the IDE provides automatic code formatting (employing the
pretty-printer from the language service) and camgppets to automatically insert
constructs like { }, the user is still involved Witmanually inserting tabs, spaces, blank

lines, semicolons etc.

It makes sense to compare usability of text editorthat of structured editors
by measuring and comparing the number of keystrqlésmic user input
actions) required to achieve the same task.

For example, let’'s consider creating an empty staté block for a method in Microsoft
Visual C# 2005:

void Foo()
{

}

It takes three to four keystrokes to insert twanklénes and to position the cursor on the
first line (either[Ctrl+Enter] twice or[Enter] , [Enter] , [UpArrow] ,[UpArrow]).
Then it takes three keystrokes to type imid “ (IntelliSensé" completes Vo” to
“void “ when [Space] is pressed) and another five fafob() ”. And then it takes 6
keystrokes to insert the curly braces and to pmsithe caret in between with the right
indentation. One could accomplish the same with ukeystrokes instead of 18, which
might seem not a big difference at first, but ifinigely gives an overall improvement of

editing experience.

It should be impossible for the caret to enterititeentation space to the left of the blocks.
If the code is properly formatted (and this alwahsuld be the case), there is no need to
edit anything to the left of the first significacharacter in the line. Now it is possible to
penetrate the indentation space by pressingLtf§ or [Home] key. All the tabulation
should be done automatically, and hence the negernetrate the left tabulation margin

should be eliminated.

13

However, experienced programmers are used to typingast, that this doesn’t bother
them at all. Besides, some languages (for exam@BeNET 2005) take more care of
typing, completion and formatting (code snippetafodormat on paste, etc), which
reduces typing efforts to a minimum. So it is a ocwon belief that the usability of
traditional text editors is not an issue, espegialpresence of such enhancement tools as,
for instance, JetBrains ReSharper ([ReSharper])Wtole Tomato Visual Assist X
([VAssist]). However for beginners, a learning aaito use an editor effectively is still

pretty steep, so formatting and the necessityke tare of the syntax is an issue.

1.3.4.Implementation difficulties with text editors

The black-box nature of the editor and the compdetates some implementation
peculiarities when developing an IDE. One of thggest ones is the complexity of the
round-tripping between text and AST. The one dioects more or less straightforward —
pretty-printing, auto-formatting and code generati@he other one is the tricky one —
going from code to the AST. This complexity is ciaslly being tackled by the parser — in
the sense of the famous dragon book ([AhoSeUl]wei@r what the successes of the
compiler science don’t currently fully cover is timeplementation of the language service:
“understanding” code and providing intelligent feadk about it. The typical problem is
implementing the expression finder and the resolvgiven a text stream and the caret
position, it is required to reconstruct the langua&gnstruct under cursor and to provide
user feedback about it (code completion, method, ipAirameter info or even colorizing).
This task requires finding the current context dfitme class and method that currently
contain the caret, as well as the current exprassieparsing the necessary text, updating
the internal representation and actually perforntimegtask.

The implementation complexity of round-tripping is due to the fact that most IDEs

currently are built around the text data structures, and not around the AST.

14

Text editor

A
Edit Display
v Pretty-print Reflection
Source code text| Parse tree (AST)| Compiled binaries
‘} Parse 1 Compiler
v
Refactoring Debugger etc...

Figure 4 — round-tripping between the AST and IDE omponents through code

To avoid this complexity, an IDE could be built anal precisely defined, language-aware
and observable syntax trees, which would serve has Model in the MV triple
mentioned in [GoF]. A text editor should be jusViaw, a thin presentation layer which
maps user edits to the AST using a controller (soSéierarchical controls representing
language constructs). All other IDE components khoualy deal with the AST (also often
called DOM, CodeDOM, Code Model, Intermediate Repreation, Parse Trees, etc.).

Like a database management system guaranteedftimecht of ACID principles, the IDE
should guarantee the integrity of its data streguThe reasons why people invented

DBMS to replace plain text are often the sameliergource code (see [SCID]).

A compiler shouldn't be a black-box, but a cleanl ARrface instead, which exposes
methods to transparently operate on the AST andhtsform it, thus making the compile
functionality reusable and extensible (pluggable)such a way one could easily plug-in
custom transformations or code generations betwieerparser and the code generator.
Authors of IDE extensions could thus reuse the dgmnjfunctionality, without the need

for own third-party parser, resolver, etc.

1 MVC = Model-View-Controller

15

A debugger could map to language constructs instéatext positions in code, thus
preventing that text positions can get out of syffaus many known bugs with line and
column number offsets could be easily prevented.

This idea brings us to the possible approach afgustructured editors to directly operate
on the AST:

Text editor Structured editor
A A
Edit Display Modify View
v Pretty-print v Reflect
Source code text| Parse tree (AST)| Compiled binaries
Parse - Compilg

Figure 5 — a structured editor directly operates orthe AST

Shifting attention to the AST instead of text dataucture would allow bypassing the
round-tripping step:

Structured editor

A
Modify View
v Reflection
Parse tree (AST) A Compiled binaries
'y Compiler
A 4
Refactoring Debugger etc...

Figure 6 - a possible architecture of an IDE builaround the AST

It is important to understand that an architectafran IDE built around a structured editor
and syntax trees doesn’t necessarily imply that dtwerce code has to be stored in a

different format, perhaps in a database. The satode could still be stored in usual files.

16

The file format of programs doesn’t even need tange. A parser could load the AST
from source, and a pretty-printer could save th@ A&ck into the source code files. The
editor could even preserve user’s formatting wheanng.

1.4.Principles of structured editors

In contrast to the modern text editors which cooédcalledlanguage-aware, you might

call structured editordanguage-driven. This expresses a more strict and constrained
approach to editing, where each change is cartie@m language constructs and not on a
list of text lines. The syntax and grammar of theguage define what language construct

can be inserted at the current insertion point,thededitor provides choice for the user.

1.4.1.Atomicity

Unlike plain text editors, a structured editor cainrepresent or operate on a part of a
language construct — it operates on AST elements \aBole. For instance, in plain text
you can have an incomplete construct with an oggbrace but without the closing brace.
A structured editor doesn’'t need braces at altekt, you can delete part of a concept by

deleting incomplete selection. In a structuredagdifou can only delete a whole concept.

The atomicity of editor operations guarantees taagjuage constructs are being added,
moved, renamed or removed as a whole. The typedri¢gsguage constructs would only
allow correct embedding of concepts — each concaptonly host those concepts which
are allowed by the language grammar. For exampa, wouldn't be able to move a
method to a namespace level, or a foreach statenterd class, or declare an

implementation on an interface method.

Each change to the data structure is of transagdtioature and is language-aware. For
instance, one would speak of changes in terms afdss was inserted” instead of “text
was inserted”. It is easier to track all the changean Undo/Redo buffer and to compose

multiple changes to a transaction.

1.4.2.Correctness

Most syntax errors are simply impossible withintraactured editor, so the program being
edited is always syntactically correct (with mirexceptions). For example, representing

hierarchical concepts as nested blocks (and ndt avdet of paired delimiters) guarantees

17

that the curly braces and #region directives willays be balanced. Curly braces earlier

used to delimit tree nodes become now unnecessary.

When you are inside a block, only blocks of certigipe can be inserted, dependent on
language syntax. You can continuously move youetcdrough your code as if it were

plain text. All the blocks are formatted automatica

Few remaining errors, which are not catched bysthecture itself, could be easily found
and highlighted by using a tree checker visitore Tinplementation would be simpler and
wouldn’t theoretically even require a scanner grasser for this purpose. Thus the editor

can automatically ensure syntax correctness bgntguage-awareness.

1.4.3.Usability

Since a structured editor has more ready knowledgeit the program being edited and
the semantics of the language constructs, it care reasily offer more intelligent user

feedback on the program and offer only valid cheibased on the current context. The
context itself can only be a correct language eansbr a correct insertion point where a
language construct can be created.

A structured editor can also reduce the numbeea@fiired primitive user input operations
(key presses, mouse clicks and moves). For exantpsesufficient to select a block and
hit the[Delete] key to remove a concept. In a text editor, oneld/diust have to select
the text which corresponds to the concept and aftlyr that presg§Delete] . When a
concept spans more than one screen (for exampig, @dass), it is still easy to select and
delete it as a whole in the structured editor, whserselecting the class in a text editor

would require scrolling.

Each block can be selected, collapsed, comment¢arcopied to clipboard, moved into
another position in the parent block or into anothileck with just one click or key press.

Entire block hierarchies are selectable just ligeal blocks.

With a structured editor the user doesn’t have twryvabout indentation, semicolons,

curly braces etc. The editor takes care of theaxysb that the user can concentrate on
editing the program and not on remembering theasyfur a language construct. The code
is being automatically “formatted” as it is typed because it is actually displayed from a
live AST, which is always correctly “formatted”. €user mostly enters important content

and not irrelevant formatting symbols.

18

Structured editors actually open wide possibiliies usability research. It is a complex
task to gather statistical information about howfedent developers perform elementary
typing operations and what elementary user inptiba€ are required (mouse and key
clicks, mouse moves, pen gestures). One thingre: slevelopers don’t actually notice,

how exactly they type — they just type without #ing about it and develop some sort of
reflexes when working with an editor for a long éinStructured editors could substantially
shorten required user input actions when compareext editors. This will most probably

be a problem for those who are already using tditbes for a long time, but newcomers
will probably appreciate it, especially becauseytden't really have to remember the

syntax (“were there semicolons insid®a loop or commas?”).

Context help for an editor could provide importainits for the user based on the current
selection and caret position. Implementing contetp would be much simpler too — one
could simply declaratively add help pages to thetay constructs, without the need to

parse the source code to determine what constrectriently near the caret.

An intelligent scrollbar could allow easy and pofuercode navigation. The scrollbar
could contain miniature portions of the code docain&his approach is being explored by
the Human Interactions in Programming group [HIR3ide Microsoft Research — in a

project called “Code Thumbnails”.

A so-called “breadcrumb” control could be provided improved navigation experience.
When a block is active (focused), an extra cordoalld show a horizontal list of all parent
blocks as a chain. Each link of the chain couldiat be a hyperlink to the corresponding
parent block, or a combo-box with the drop-dowhdisall other siblings at this parenting

level.

Another possible future direction for usability @asch is key stroke prediction based on
statistics — gathering and accumulating typing erpee from users all around the world
could provide some Al-driven preselection what ¢aret is going to be used next, just
like IntelliSense in Visual Studio 2005 remembéies last used type and member.

For those who are sceptical about the usabilitg efructured editor because it will be so

unusual and difficult to use, Wesner Moise givgsabable answer to this in [WesnerM1]:

. ... Such graphical editors won't actually appearcmdifferent from text
editors; they may even look the same as text eglitaith some differences.”

19

Thus structured editors could mimic traditionaltteritors to provide familiarity but still

retain the advantages of structured editing.

1.4.4.Presentation

Another good thing about structured editors is thay are very easily skinnable, because
the content is decoupled from the presentatiort likesa CSS stylesheet can provide a
totally different look for an XHTML document, onewd easily change the presentation
of how language constructs are visualized on theesc It is the content and the structure

of that content that matters.

These are the reasons why XHTML + CSS were devdldpereplace old
HTML where the presentation was mixed with the eaht Another example
for this development are styles in word processotsch are definitely better
than inline formatting scattered all over the doeatrin multiple places.

When the presentation can be adjusted independaintigntent, preserving team’s coding
guidelines becomes a snap. One could virtuallyt*etlie teams coding guidelines in a
special domain-specific editor, for example in apincal design software with gradients
and visual effects, and the entire source code advbal automatically displayed with this
style on the fly. Or, every developer could evemehawn coding guidelines (style library)

—and have all the code automatically displayeth Wér/his favorite style.

When you open the program in another IDE with dédfe settings, the code could be
displayed using these settings automatically, withthe need to manually reformat it.
Reformatting code would become unnecessary. Codlel @ automatically formatted for

printing based on one of printing templates.

Again, this is another manifestation of the MVCngiple: one could easily switch views
or use several different synchronized views at shene time, as long as the model

(content) is clearly separated from the presentatio

Another nice feature of structured editors is thegibility to collapse everything, to only
show the currently relevant code. This could go Imfisther than by text editors — one
could even apply custom sort or filter to displayyorelevant things in the desired order.
The order in which the declarations are physicaligred in the file would become
separated from the logical order in which they presented to the user. Different

developers could even have the same code sortedyawant it.

20

This is a common reason for disagreement in tedmatacoding guidelines —
some prefer to have all the fields at the beginmihthe class, and some prefer
to have each backing field attached to its corredpmy wrapping
property/getter/setter.

Structured editors are also well suited for embegldither mini-languages (D$Lwithin
the main (host) language. Just as LINQ features aat of “embedded SQL/XML” in C#
3.0, structured editors could easily embed cust@h,Dor example mathematical notation

for expressions, with the square root sign andacadrfraction notation.

An editor could contain custom interactive contrimlsmprove the editing experience for
specialized content, for example a color-choiceupopox where a variable of type Color
is required.

Other visual formatting could be added as neces&anyexample, custom lines, rules and

delimiters could be used instead of ASCII-art stgenments:

Lutz Roeder gives insightful examples of such dnments in [LutzR1].

1.4.5.Simplification

A structured editor could simplify and automate sn@nogrammer’s tasks that now have
to be carried out manually. Backing fields for pedpes can be entered and displayed

concisely (C# 3.0 now does this with its auto-innpéated properties).

1.4.6.Extensibility

A structured editor could provide a platform fortending the language by defining some
equivalent of macros. One could define a new tyfp& language construct externally and
then just plug this type into the grammar of théaed Thus very concise and expressive
shortcuts for long pieces of code could be defivatich could be expanded into longer
code sections during the code generation. Therdiftee between such macros and, say, C
#define macros is that the structured macros (unlike Crasgcwould be language-

aware, and thus all the type-checking and veribcatan actually take place. The problem

! DSL = Domain Specific Language

21

with C macros was exactly the lack of language-awass — the substitution took place
before parsing, at the preprocessing stage. Witbulage-aware macros the substitution
takes place after parsing — language constructdeirgy inserted into the existing AST,

thus allowing all checking visitors to run on thieal tree. Moreover, the editor’'s grammar
and type-checking facilities could only allow intleg macro instances at correct places in

the tree. This eliminates the problems of text-tdasacros and preprocessing.

The [Nemerle] programming language gives a greatnge of language-aware
macros in a text-based language.

The structured, factored nature of the editor woalldw to more easily extend the
language without actually extending the languadagding in new language concepts
probably wouldn’t even require recompiling the editA new ecosystem for “language
plug-ins” could arise, which would allow each saite vendor to develop tools for the
product parallel to the product itself, in the serd Microsoft's Software Factories
initiative ([SoftFact]).

A great research about extensibility of structureditors is given by Intentional

Programming ([IntentSoft], [Simonyil]).

1.4.7.Implementation

An IDE built around AST structures and backed btauctured editor that directly

operates on this structure could really simplife tarchitecture and implementation of
many components, such as code completion, refagtonavigation, debugger, edit-and-
continue, etc. The thing is, it is easier to mdke IDE intelligent if there is no need to
constantly round-trip between text and AST. A gamample is extracting a method,
which would be simpler to implement in comparisoithvéome current implementations,
where a lot of effort has to be put into the rodmnpping. When some code has to be
inserted into the program with a text editor, aong@roblem is finding the correct place to
insert and take care of the formatting. A struaiueditor takes care of the formatting.

An important advantage in the implementation isnglating the need for a background
compiler. When the AST is kept up-to-date by thioedtself, there is no need to reparse
code in regular intervals in a background threadheWthere is no background thread,
there is no danger that the program information ld/@et out of date, which can be the

case with background compilation. Implementing akiggpound compiler is not an easy

22

task and freeing the developers from the need pdeiment one could simplify the overall

architecture of the IDE and keep it more robust @mbkistent.

1.4.8.Performance

It may well be the fact that the performance ofractured editor (especially when doing
complex language-aware operations such as codeletompor refactoring) would far
surpass that of a text editor. Resolving and repgiis a common bottleneck of traditional
language services, and a structured approach bamidle this elegantly.

1.4.9.Storage and version control

When the source code is stored as text, the iHtezpeesentation isn’t stored with it — it is
being reconstructed every time when the sourceadddd into the IDE. That's why the
changes are expressed in terms of changed lingsrgion control systems. Moreover,
current version control systems do not provide lbee#t about, for instance, how many

classes were changed, how many methods have bded/eemoved/moved/edited, etc.

When the parsed and resolved AST is stored in siare¥d and transactional database,
changes could be registered in fine-granular, laggetaware manner: classes added,

methods edited, variable renamed, etc.

Thus the editor (“View”) could reside on the clieartd the code being edited (“Model”)
could be inside a database repository on a (pgssévhote) server. This could even
potentially allow several people to edit the sam@gpam at the same time (while viewing

updates in realtime), which is more fine-granultert current version control systems.

Branching and merging operations could be carriat rmore easily and in terms of
changes to language constructs. Because the drdeclarations on a class or namespace
level is visible to the system, moving a methodhwmitthe same class wouldn’t even be
considered a change for the end-user — the useoscaity out forward- and reverse-
integration processes now can concentrate on theninmge of the program, instead of

formatting.

Another advantage of language-aware source codesitepes that store AST in a
database is a requirement, that every code beiagkeld in must be at least syntactically
correct. When implementing such a system, it sunayld be possible to only allow to
check in code that compiles, because the systendwmderstand the code which is being
checked in.

23

A language-aware version control system can preweaking builds.

Moreover, the check in process as such, could pkaed in the future by more fine-
granular “transactions on code” — literally eachamfpe would be registered in the
repository as a transaction and one could groumgdgsa manually to the desired
granularity level, thus grouping changes to largetities (for example, one day’s work).
The change groups could be grouped too (desigrerpafiomposite) to encapsulate

features, milestones, products, etc.

A web-service based, programming language indepe¢rstirce code repository would
allow developers to access shared code from desidoputers or mobile devices. The
code can be automatically formatted and representady preferred way on the client (by
the editor), whereas the repository is formattiggeastic.

A lot of insight about storing source code in somirmediate representation (e.g. a
relational database) is given in [SCID]. A big apalion of storing source code in

database could be static analysis tools.

1.4.10.Static analysis and source code querying

Static analysis of source code and source codeyiggeare becoming more and more
popular nowadays. Tools like [FxCop], [NDepend]efi@nle] and [NStatic] either store
the parsed code in a relational database, parsecode on the fly or analyze
assemblies/byte-code. Either way, they operateherAST, and if the AST exists during
code editing and is always up-to-date even withtbatbackground compiler, such tools
could greatly benefit by eliminating the need focustom parser or even provide a real-

time “as-you-type” analysis experience, where fussi

1.4.11.Help with learning the language

A good thing about structured editing is that itneore explicit about the language
constructs being edited. A structured editor bett#ects the inner structure of a program,

how it is seen by a compiler.

Currently, the first thing beginner programmersriheas the textual syntax of a
programming language, not the language constrimd@mgelves. A common beginners
question when learning programming is “what [larggiaonstruct] can | actually insert at

the current position™? Other beginners problems fmeexample, remembering the right

24

keyword, spelling and order of arguments, typind &rmatting, matching curly braces,

indenting blocks with tabs etc.

These questions could be better answered by astedceditor, where syntax constructs
and their embeddings can be more clearly visualiaed an alternative list would only

show possible constructs.

Also, programmers use different programming langsadn particular, the Microsoft
.NET Framework supports many languages in a siagle&ronment. Understanding code,
written in another .NET language, is for many astable. However it is often the case that
the languages differ mostly by syntax and it is gkietax that prevents a C# developer to
immediately recognize a constructor iSub New ... End Sub ”. The structured
approach allows to at least partly erase the baiexlabetween different .NET

programming languages and those who use them.

1.5. Disadvantages and possible difficulties

1.5.1.Usability

Probably the biggest predicted problem of a stmectueditor implementation is the
usability problem. While editing text is straightfeard and consistent (only some basic
operations are needed, such as insert a chardetete a character, move the caret, etc),
editing the AST structure on the screen requirasniag how to operate on each node of
the program. Moreover, editors that force the useuse menu, toolbars or the mouse
during editing are most probably destined to fhéxt editors allow to edit programs using

keyboard only and users won't give up this ability.

That is why, a structured editor must be more &sdbhn a text editor by at least the
amount necessary to convince users to transitionsttactured editing. This puts
tremendous constraints on the user interface, thgebt of them being able to use
keyboard only. Also, the comparative amount of kegss operations to achieve same
functionality must be lower than amount requiredext editors. Another restriction is that
the editor must be consistent (different languagestructs must be operated the same
way). Only under these strict circumstances theussat will even consider giving the

structured editor a chance.

25

1.5.2.Lack of familiarity

Even if structured editorsould be better than text editors in all areas, theralavstill be

an important advantage of text editors over stmectieditors: users throughout the world
are well familiar to text editors. For exampleydu have ever used Notepad, you will be
immediately familiar with the editors of [SlickEfitVisual Studio ([VS]), [ReSharper],
[Eclipse], [IntelliJ] IDEA, etc. Structured editomsiust offer sufficient value over text
editors while preserving all their advantages, #uiglis a very complicated problem.

1.5.3.Lack of flexibility

While text editors become more intelligent and Usaly applying more and more

constraints to what can be typed in plain texticdtred editors move to the same goal
from the opposite direction: they start with theicsést constraints that arise from the
hierarchical nature of the program and relax soarestraints to allow temporary incorrect

program states for improved and simplified editxgerience.

Less restrictive, less .
language-aware Text editors

l

Ideal language-aware editor (hybrid)

!

Structured editors

More restrictive, more
‘L language-aware

Figure 7 — approaching the ideal editor from diffeent sides

As noted in section 1.3.2, text editors aren’t tediby the semantics of the language and
allow the program to be in an incorrect state eieample, if it is required to provide more
flexible editing experience. Structured editorsheit lack this freedom to corrupt the
program for the sake of usability, or must weakens@crifice) the constraints posed by
correctness checks to provide the user with thesszey flexibility. This is a compromise

every developer of a structured editor must facsmepor later.

26

The editor shouldn’t stand in the way. The userstibnotice the editor just
like people don't notice the pen they're writingthvi

Somewhere in between there is the editor of thardéutwith just the right amount of

flexibility and language-awareness.

1.5.4.IDE dependency

Software developers and development teams choodevidop a product using a specific
programming language or a combination of languagdss brings in a language
dependency, but still leaves the freedom to chtlosdDE for that language. If the source
code is stored as plain text, it is easy to open & different IDE without the need to
convert anything.

But if the developer/team chooses a specific sirect IDE, the dependency is much
greater. Not only the source code will probablysb@ed in a custom format of this IDE,
the developers might get used to the concreterealitd it would be difficult to change the
IDE in the future. However, the problem is solvald@ IDE might (and most probably
will) provide an option to store source code inttibes, just like traditional IDEs do. Or
the storage format could be standartized, just &kprogramming language syntax is
standartized. Beside standardizing programminguaggs of the future, it will probably
make sense to simultaneously standartize the stacistorage/representation format for

programs in that language.

1.5.5.Preserving source code formatting

Many developers would feel very uncomfortable & ttustom formatting of their source
code would be influenced or even completely losabyeditor. Imagine a situation where
existing source code is stored in text files withstom whitespace formatting and
comments. Such formatting (as indentation or emiptes) could carry important
information for the developer, or even convey vitdiormation via the team’s coding

conventions.

The problem is that a structured editor is typicalhaware of whitespace and formatting
because formatting is not formalized by the languggammar and is ignored at the

scanning phase.

27

However, this problem could be solved by usinfgranatting preserving parser, which
not only stores text position (line and column)imhation for every node of the AST, but
also stores special nodes that represent all tttealewhitespace between the language

constructs, which is normally being ignored by itiadal scanners.

This formatting information should be taken int@w@ent by the structured editor and the

pretty-printer should output the source code inicigall the whitespace.

An interesting research direction could be autocadlti deducing whitespace formatting
rules from the existing source code and auto-imgeuch whitespace when new nodes
are created in the structured editor. For exaniple,editor should notice that there is
always an empty line between methods of a class$t seould automatically guess and
insert an empty line around a newly created metklmvever this task is obviously very
complicated because of its non-deterministic natarel also because whitespace
formatting is something that is being mostly igrtbkey the compiler and programming

language research.

1.5.6.Standardizing difficulties

It is already difficult enough to come up with arstard for a programming language,

including its grammar and semantics.

Most often standards do not cover code representéfiormatting and coding guidelines),

because this is not formalized as good as the Egeyayntax.

Coming up with standards for a structured editoraftanguage is a highly challenging and
vastly non-trivial task. Such a standard would neetdonly to cover the appearance of all
language constructs in all possible contexts, oholy margins, padding, colors, border
thickness, styles of backgrounds etc. but it woalsb have to describe and formally
specify the editing behavior, keystrokes, visuahrgfes in display and so on. Such a
specification would probably be more voluminousnthhe HTML 4.0 specification,
because HTML only covers static presentation anesdwot include complex runtime
behaviors exhibited by structured editors.

28

2. Existing research

2.1.History

Decades ago many developers started thinking adtarhatives to representing programs
as plain text. With the improvement of programmiagguages and environments, the
intuition grew stronger that the syntax tree shdugddirectly represented on the screen.
However, the first wave of research and developrfaletd to produce a structured editor

or environment capable of becoming mainstream. Tdilare resulted in a widespread

disappointment in structured editing overall, bessathe promise was very high, but the
outcome was unusable. Since the first wave of fiesluless effort has been made to build
such an environment. But there is still ongoingeagsh happening in this area.

2.1.1.Motivation

Wesner Moise outlines great motivation points foudured editors in his blog posts
[WesnerM1] and [WesnerM2] dated 2004.

A good summary of the features of a hypotheticalcstired editor and a lots of bold ideas

are given by Roedy Green in [SCID].

Martin Fowler ([Fowler]) has written an outstandiagicle on “Language Workbenches”,
which is very close to the idea of a structuredaediThis article is an in-depth overview
about domain-specific languages and the need ftdbls to get more language-aware.

Sergey Dmitriev of JetBrains writes about “languagented programming” in [LOP].

29

2.1.2.Problems with building structured editors

Many (if not all) early attempts to build a usaldguctured editor failed to become
mainstream. One reason for this could be that heroarputer interaction wasn’t mature
enough at the moment (first developments of GUlewest sufficient, many GUI concepts

weren’t invented yet).

Another complication was the complexity of makingarse tree interactive. This task is
fairly similar to building an HTML renderer, butig more complex in a sense that it needs
to support real time editing — just like WYSIWY Gitals do. A fairly complex framework
of visual controls is necessary. Tying togetherftmetionality of stand-alone controls in a
convenient way is not a straightforward task tooloAof difficult problems need to be
solved here: defining an intuitive appearance atthbior of controls, developing fast and
robust layout algorithms, defining the order of lkesrd navigation, routing mouse and
keyboard events, response to user input, modetangsactional undo/redo behavior and

much more.

Another important cause why structured editorg atén’'t mainstream today is given by

Wesner Moise in his blog post [WesnerML1]:

| think a major cause of the delay in this revalntis that both C/C++ relied on
preprocessors and headers. Some historical languiége Smalltalk actually
had this support. Fortunately, more modern langsiige C#, Java and VB are
standalone files, one class per file, with a litheno preprocessing support.
This enables easy parsing.

Most probably this is yet another reason why apgeae of managed environments such as
Java and .NET actually triggered a new wave inae$eand development in the area of

structured editing.

Another trigger were probably more mature modergetigpments in the area of the
graphical user interface, which provide visuali@zatand interaction techniques that simply
weren’t available 20 years ago (just think aboutddsoft IntelliSense and the impact it

made! Or compare Eclipse to Notepad!).

2.1.3.Usability problems

Despite of the complexity to create a structureitbedthe first editors were actually built,
and they were working, but the usability wasn’t ge@nough to compete with traditional

30

text editors, which allow for a reasonable editsgeed and comfort. Usability is really a
major problem, because of two issues. First, alne&ry editing action requires a
sequence of keyboard/mouse operations, often |athgerwhat it takes to edit plain text.
Second, this new way of editing is totally differeand needs to be adopted by the user

first.

However, the research in structured editors ise&dd A lot of fruitful research is going on
currently and promising technologies are emergwgjch will hopefully tackle the
usability issues. Here we will try to give an ovew of major happenings in the area of

structured editing.

There are existing implementations of structureitibesl We’ll consider the most popular

of them, in random order.

2.2.Intentional programming

Intentional Programming is the brainchild of Charfgimonyi. Originally started within
Microsoft Research and enthusiastically led by Siyiwothe development later branched

off Microsoft and became independent IntentSoftpCar August 2002 [IntentSoft].

Intentional programming is all about capturing theentions of a developer during the
coding process and maintaining the high abstradgeal inside the environment. Thus,
the meaning isn't stripped off the code so the mmvhent literally “knows” about what’s
being edited. Custom editing operations can benddfifor the code, which allows the

developer to extend the IDE itself.

A great overview of intentional programming is givean the book “Generative
Programming” ([CzEi], Chapter 11). Other resourtetude an insightful interview with
Simonyi ([Simonyil]), an OOPSLA 2006 presentati¢imtentSoft2]) and many others.
Links about intentional programming are being acglated at

http://del.icio.us/KirillOsenkov/IntentionalPrograning.

An implementation of intentional programming imglia structured editor for the source
code. The OOPSLA 2006 paper about intentional amogning shows how the model-
view-controller architecture is used to interadiyvdisplay same code in several views —
plain text, flow diagrams, etc. However, at the neomof this writing, no public preview

of the IP system has been released yet.

31

2.3.JetBrains MPS

In Sergey Dmitriev’s inspirational article [LOP]desire is expressed to allow developers
to extend an IDE and to be able to customize itHerproblem domain. A strong accent is
made on developing DSLs — domain-specific languagespposed to using general tools

and frameworks. This approach is called languagmt@d programming.

The interest of JetBrains in this topic is not oofytheoretical nature. They develop a very
successful and intelligent IDE for Java, Intell3EA ([IntelliJ]). It is distinguished by its
extensive language-awareness and a large numbefulbhutomated refactoring

capabilities. IntelliJ IDEA is also known for itgtensible object-oriented architecture.

It is not surprising that having such a good badstBrains also work on an implementation
of language oriented programming, what they callS{meta programming system). MPS
is an IDE extension which allows the user to debma domain-specific-languages and to
create documents in these languages using a cuatlomed structured editor. These
documents (called “models”) can be transformedeoegate artifacts such as source code
or XML.

Martin Fowler demonstrates the creation of an Agrest DSL with MPS in [Fowler2].
This is a set of a customized editor, languagend&fh and generation rules to generate
Java code out of models. This language could be tssgenerate Java code out of more
concise descriptions in a specially tailored largguenstead of directly encoding it in Java
manually. Thus the level of expressiveness is tyreaised.

MPS employs the technique of structured editingrtivide an editor for custom languages
and language extensions. The editor is universalamimg it can be configured by a
specialized grammar — that is, you don’t need to4{tade the implementation of an editor
for each language, but simply edit the languagentien (in a special DSL) and the editor
will automatically learn how to edit programs iratHanguage. Thus, an editor exists to

build editors.

Here we notice how a domain specific language &lue describe grammars
for domain specific languages. This idea of a “mmetdel”, a language for
defining languages, comes up fairly often in tle¢dfiof meta-programming and
generative programming. If we talk in terms of dafg specialized languages
for everything, why not define a specialized larggudor creating specialized
languages?

32

2.4.The synthesizer generator

Starting in 1978 a syntax-driven editor called @&firiProgram Synthesizer was being
developed at Cornell University. The Synthesizemé&sator [ReTel] is the further
development of it, which is a tool for generatingntax-driven editors based on the
specification of the language grammar. Apart frostractured editor for the Ada language
(Ada-ASSURED), the development of synthesizer gaoeiseems to be abandoned.

2.5.0ther implementations

2.5.1.ProgramTree

ProgramTree ([ProgrTree]) is a commercial applazatvhich replaces curly braces in C++
and Java sources by a tree-view-like outlining. AMML editor also based on this
approach is being developed as well. However itnsekke ProgramTree isn't truly a
structured editor (is not aware of the semantiog),it simulates structured appearance by
matching braces in realtime. Thus, the user stitsglain text and it has to be parsed first.

2.5.2.Lava and LavaPE

As stated at the [Lava] website:

Lava is an experimental object-oriented rapid aapion development (RAD)
language with parameterized ("virtual") types, c&aing, and extensive static
checks. The Lava programming environment LavaPHacep text editors
completely by structure editors.

Lava seems to not only present a new programmingukage and a purely structured
editing environment, but also a new programmingagiggm — the program should be
“‘composed” instead of being “written”. Lava is arpeo-source project hosted at

SourceForge and is a playground for some integegdigas and visions of its developers.

2.5.3.BoxView Eclipse plug-in

Eclipse platform has a plug-in developed for itqi®iew]) that displays a hierarchy of
embedded blockiseside textual code. This is an interesting approachgcivis mostly used

for easy selection of language constructs. Howeweright be difficult for users to switch

33

between two parallel views. BoxView currently doex offer displaying the cod@ the

blocks.

2.5.4.0ther links:

An up-to-date list of web links about structureddeoediting is maintained at
http://del.icio.us/KirillOsenkov/StructuredEditors

2.6. Summary

It is very common for most structured editor imp&artations that the editor is generated
from a grammar using a universal generating to®lpgposed to hard-coding the editor
manually. Such systems consist of a universal gemelitor generator, which accepts a

language specification as input and generatesailveas of a structured editor as output.

Instead of writing a structured editor, they write universal factory for
producing structured editors.

Although this approach is one meta-level highergd dhus may occur flexible and
universally applicable, in practice it is probalaydisadvantage because of tremendous

complexity to create such a meta-system.

An intuition based on some experience suggestshidnad-written editors could be better
customized to be more comfortable, because thdorseaan manually adjust it to the
target language. A generator puts tight constrantthe generated editors, unless there is

a powerful extension mechanism which allows for vsmxtensions.

It also seems more logical to first create an editanually, adapt and optimize it for better
usability, and only after that it makes sense tiddba universal tool to generate editors.
Both JetBrains MPS and the Synthesizer Generatgrauther or may have suffered from
this additional complexity, whereas developing @ditmanually would probably be a

simpler and more manageable task.

34

3. Functionality of the structured editor

Regardless whether a stand-alone application egtiated into an IDE, the main element
of a structured editor is the editor control. Antedcontrol is a user interface element
which visually displays the edited program on theeen. It is a rectangular area on the

screen where a program or a part of it is displayed

In case of the structured C# editor presentedigttiesis, the editor control can display a

single compilation unit at a time.

Theoretically, with a structured editor it is pdssito provide different views
on the source code. Examples include showing eofishethods in an editor
control (e.g. a list of all overrides of a givemtual method), or a single class
with no method bodies, or any other arbitrary viewpart of the code, all live
mapped to the AST. However, only a view of a singtenpilation unit is
supported within the scope of this work.

Here is how an editor control looks like (one oégible visualization modes):

35

using System
System.Collections.Generic
System.Text

namespace Guilabs.Editor.Test

H

[

public static class

(8]
(]}
=
w
=1

public static void Main()
Console.WritelLine ("Hello World"ﬂ

Figure 8 - the Hello World program in the structured editor

3.1.Creating a program

3.1.1.Hierarchy of blocks

A program is represented in an editor control dsiemarchy of embedded rectangular
blocks. There are simple blocks (with no embeddedks) and there are container blocks,
which can contain other blocks.

If a container block has a min=sicon next to it, it can be collapsed by clickirngsticon.
To expand it again, click tr+icon. Most containers, if selected, can also b&apsed or

expanded by pressing tf&pace] key.

3.1.2.Insertion point

An insertion point is a special location within teeéitor control where the user can put the
caret. The caret indicates that it is possiblegeiit something at the current caret location.
Moving the caret means jumping to the next or mesiinsertion point. For instance, when
editing text, an insertion point is between eact twighbor characters.

3.1.3.Language constructs

In this section we cover the language construgipatied by the current implementation
of the editor. We divide the language construdis iwo main groups: language constructs
that ar€‘outside” a method body (such as namespaces, types ancthgipbers, as well as
methods themselves), and constructs that iasede” a method body (such as statements

or expressions). Formally, if we consider the Céingmar, a construct is “inside” a method

36

if it can be contained withirmember-body or accessor-body . This separation is
important because it divides the language into approximately equal “levels” — the
upper “level” and the “lower” level. We will work ith language levels throughout this

thesis.

For the language constructs currently supportedhbyimplementation of the editor, we
will provide a grammar definition. It will alwayseba subset of the actual C# 1.0 grammar
given in the ECMA-334 standard ([ECMA]).

Language constructs are visually represented biltoks mentioned above.

3.1.4.Hybrid editor

The structured editor presented in this thesisois purely structured. It is more like a
hybrid between the structured and text editor -héiglevel of the language (types,
members) is implemented in a structural fashionileMower level (statements, method

parameters) is implemented as plain text.

It seemed to lower the usability if all languagenstoucts, including statements, were

implemented differently from text.

3.1.5.Compilation unit

Here is the definition of the compilation unit agpported by the current implementation of

the editor.

compilation-unit:

using-directives opt NAmespace-member-declarations opt
At any given time the editor control can contaisirggle compilation unit. A compilation
unit corresponds to theompilation-unit non-terminal of the C# grammar and is
visually represented by a vertical list of blockbese blocks could be comprised of using
directives and namespace member declarations. Tharbe only one using declaration, at

the top of the compilation unit.

3.1.6.Empty blocks

The elements in this vertical list are blocks. Betw each of these blocks, there is a so-
calledempty block, which separates the language constructs from etdr with some

whitespace and allows to insert new language cactstin place of the empty block. Each

37

empty block is an insertion point. Empty blocks leily model a non-terminal of a
context-free grammar, which allows for insertion lahguage constructs in the correct

order. Let’s illustrate this with a context-freeagrmar with two non-terminals:

A - dB|AcB
B _ BcB

“A” here is a non-terminal (empty block), from whidttbusing directived” as well as a
namespace member declaratiari ‘tan be produced. We see, that as soon as we have
produced a using blocld", it appears at the beginning and no further uglogks can be
produced. If we choose to produce a namespace metebkaration out of A", we still

have the ability to insert a using block beforebiit not after. B” represents an empty
block, from which only namespace member declaratioan be produced. One cannot

produce a using block from such an empty block amgm

This mechanism of empty blocks automatically ersubat only grammatically correct
compilation units are allowed. One cannot creatsiag block after a namespace member
declaration, neither can one create a second b$icg after the first one has been created.
Additionally, one cannot create a namespace mexhaaration before an existing using
block, but can freely create it before or after athyer namespace member declaration.

3.1.7.Inserting new language constructs with empty blocks

The user of the editor can position the caret mdide empty block to insert a new
language construct at this position. After inserti will be automatically surrounded by

appropriate empty blocks.

Each empty block has a list of all language cowms$rithat can be inserted at its position.
To show this list, the user can start typing — lieewill popup and highlight the desired

alternative:

1

== abstract

£ class

2] delegate

=] enum

interface

== intemal

B comespoce]
== partial

== public =l

| v

I

Figure 9 - completion list inside an empty block

38

Otherwise, the user can prg¢sab] , or[ContextMenu] or right-click with the mouse at
the caret location (to the right of the caret).Skbect an alternative from the list, the user
can pres$Space] , [Enter] ,[Tab] or left-click the desired item with the mouse.tA¢
moment when an alternative is selected, new blacksreated according to the grammar

rules.

Here is an example how a new namespace can be sdtiezlempty compilation unit. An
empty compilation unit always contains a single gnghock, which serves as the starting
point for the editing. The caret is positioned histempty block. The user starts typing
“na” and the completion list appears with the wardmespace” highlighted (Figure 9).

The user pressgSpace] to insert a new namespace:

namespace |

The caret jJumps automatically to a place whereusder can input the namespace name.
The user types in a name for the namespace anpresgReturn] or [DownArrow] to
move to the namespace contents. One can alsoteateame at a later stage and navigate
away right after creating the namespace — thilosvad. One can always come back later
and complete the definition by entering the name&hange the name at any time.

3.2.Namespace member declarations

A namespace member could be a namespace or adygfagation.

namespace-member-declarations:
namespace-member-declaration
namespace-member-declarations namespace-member- declaration

namespace-member-declaration:
namespace-declaration
type-declaration

type-declaration:
class-declaration
struct-declaration
interface-declaration
enum-declaration
delegate-declaration

39

3.2.1.Namespace

As we have seen above, a namespace is represgnteddmtainer with the “namespace”
keyword, a textbox for a namespace name and aaklist of “children”.

3.2.2.Navigating containers with the caret

Navigating the caret around the namespace is tine s& for all other containers. Arrow

keys move the caret or select the entire namedpack.

When the caret is above the container block, pngstie[DownArrow] key first selects
the block itself. When a block is selected, pragsie[RightArrow] key selects the first
element in the title row of the container (the nanR¥essingDownArrow] key selects
the first child of the container. Generall{ypArrow] and[DownArrow] traverse the
block tree in the depth-first search order. Seeenadmout this in section 6.2.

[LeftArrow] key is opposite to th¢RightArrow] key, while [UpArrow] key is
opposite to thgDownArrow] key. In general, navigating the block tree is vangilar to

navigating caret in plain text, with two major egtiens:

1. The caret in a structured editor can only be plaghdre it makes sense (where
there is an insertion point available).

2. An additional stop in the caret movement is madedlect the whole container
when a caret is moving into it. Each container pdes all its children in the

traversal order.

3.2.3.Using directives

To add a using declaration, the user positionsctiret to the empty block above the
namespace (by pressing tlupArrow] key) and starts typing “u” — the “using” item is
highlighted in the completion lisfSpace] inserts a new using declaration. The using
declaration consists of a single container per dlatgn unit, with the word “using” on it.

The container contains a vertical list of stringsamespace names, each namespace name
on a separate line. A semicolon at the end ofitteslis not required, because the editor

doesn’t (currently) allow multiple declarations e same line.

40

using

namespace Test

Figure 10 - adding a using declaration

The user can now type in a namespace name to iny&rtg directives are placed inside a
single 'using' container (only one container pengitation unit). When done entering the
namespace name, pressiiggter] moves the caret to the second line inside the same
‘using’ container. When no further using directivaee desired, pressirignter] for the
second time[Backspace] or [Shift+Tab] exits from the using container and moves
the caret to the next empty block:

using System
System.Collections

namespace Test
Figure 11 - exiting from the using declaration

3.3.Type declarations

The user of the editor can add each of the 5 siggaype declarations to the program: a
class, a struct, an interface, an enum or a deledakere are two ways to add a new type
definition. The first is explicitly choosing one &flass”, “struct”, “interface”, “enum” or

“delegate” from the completion list of an empty ¢ko

namespace Test

|
2] interface =]
== internal
=l namespace
== partial
== public
== sealed
= static

- EXCH

Figure 12 - completion list for creating types

41

The second is choosing an access modifier firderAfn access modifier has been entered,
the editor transitions into a temporary state wlattbws entering further access modifiers
or a type declaration. This way, the user can etetdrjust like in traditional text editors:
“pu” ([Space] key completes to “public”) “st”[Epace] key completes to “static”) “c”

([Space] key inserts a new public static class).

Blocks that represent definitions of class, strunterface and enum are all similar
containers, with a horizontal title line and a dlegbmpartment:

Title line

l
namespace Tesﬂ

public class Foo

Children compariment

Figure 13 - container block sample

Unlike namespace blocks, type definition blocks énawn additional section that allows

editing the access modifiers of the correspondamgliage construct.

3.4. Access modifiers

A special element of the user interface is usethi@del access modifiers. It is a horizontal
list of access modifier keywords and spaces betwesn:

L L -

public static partial class Forml

e

Although the modifiers may look like plain textethare not. A space between two access

modifiers can be selected and is actually an ilmsegoint:

pub;i”ustati: partial class F]

e

e

o Ll L

42

The user can right-click the selected insertiomptd popup the completion list or just

start typing in a modifier:

I||
[
|
—
k]
Il.
I||
[
|
—
k]

public id static partial class
abstract

sealed

As we can see, only the modifiers which are vatidd class are being displayed in the
completion list. Once the user commits the compitetlist by pressing[Space] ,
[Enter] , [Tab] or by clicking the desired completion list iterhetaccess modifiers of

the class are changed accordingly:

inte:naletati: partial class Forml : Form

The editor didn’t simply insert the word “internalt actually changed the modifier at the
underlying data structure, and the view was updatedrdingly to reflect the fact that the
class is not public anymore, but internal. It ddesratter, which insertion point we choose
to insert a new modifier — it could be before aernfany existing modifier keyword. If a
modifier already exists, it will not be added a @®t time. If a modifier just entered
overrides some existing modifier (just like intdrimaplies not public), the old conflicting
modifier is deleted automatically. New modifierg automatically inserted at the correct

location, regardless where the caret currently is.

Modifier keywords can only be selected as a whole:

I||
[
|
—
k]

internal |statiq partial class Forml

When a modifier keyword is selected, the user cah $tart typing or pred&nter] to

popup a completion window with a list of possild@lacements:

I||
[
|
—
k]

internal |statiq partial class Forml
‘abstract '
sealed

43

To delete a modifier keyword, select it and pi@ssdete] . If an insertion point between
two modifiers is selected, pressiriDelete] deletes the next modifier keyword, if

available, and pressifgackSpace] deletes the previous one.

All changes to the modifiers have a transactioalire and can be undone if necessary.

3.5.Class and struct members

The possible contents for classes and structs sigapby the current implementation are

the following:

class-member-declaration:
field-declaration
method-declaration
property-declaration
constructor-declaration
static-constructor-declaration
type-declaration

struct-member-declaration:
field-declaration
method-declaration
property-declaration
constructor-declaration
static-constructor-declaration
type-declaration

3.5.1.Method

A method is represented by a container with the lihe and the children compartment.
The title line is a horizontal list that containgass modifiers, method return type, method
name and parameters. One can create a new methdwbyging the item “method” from
the completion list of an empty block. One can ariigate methods in empty blocks that

reside within a class or a struct.

Just like with type definitions, the second waycteate a method is just starting to type
access modifiers or the method return type. Aftemecess modifier or a return type has
been entered, the editor is in a special statetwdllows entering the member name. Only
after the user has finished entering a member reamdepresses “(“, the editor can decide

that the user wishes to enter a method. If the peesses “{“ instead, a property will be

44

created. Until these two decisions are made, tHmished string is considered a field

declaration (unless the type iofd ”).

The children compartment of a new method initiabntains an empty statement block.
An empty statement block is a textbox where the naa enter new statements. When a
syntactically correct statement is entered intoeampty statement block, it becomes a
statement block itself. As soon as the text oflileek is edited and doesn’t represent a

syntactically correct statement, it is again trdats an empty block.

3.5.2.Property

Properties have always been a very useful and ten oked feature in C#. However the
syntax to enter a property in C# 1.0 is a littlebese: it is necessary to enter 12 lines of

code for the trivial property:

private string mName;
public string Name

{
get
{
return mName;
}
set
{
mName = value;
}
}

Visual C# 2.0 provides aid to simplify entering Bugroperties: there is a “prop” Code
Snippet, which simplifies entering the propertyataninimum effort. However, once the

property has been entered, working with it st¥dlves a lot of typing.

Finally, in C# 3.0, a new feature appears, whidowa automatic generation of trivial

property implementation by the compiler. Thussisufficient to enter:

public string Name { get; set; }

to achieve the same purpose as the code above.

Working with properties in the editor presentedhis thesis is simplified. While there is a
“prop” item in the completion list, which results an empty property being inserted, a
more flexible way to create a property is to stgping just like if creating a method, and

then pressing the “{" key after the property nam®w the next line:

45

public string Namq
becomes
class Program
public string Name
get
set

where theget andset accessors are inserted automatically. To delejet aor aset
accessor, it is sufficient to select it and préms[Delete] key, just like with any other
block. If bothget andset are deleted, the property becomes a field dedaaratvhen the
user presses “{“ in the next line after a field ldeation, the field becomes a property with
bothget andset accessors. If only one of the accessors is preardtthe user wants to
add the second accessor, it is sufficient to sefleet existing accessor and to press

[Enter] or[Insert]

3.5.3.Field

Another type of a class/struct member is a field.sfated above, creating a field is similar
to creating a method or a property until the usesges “(* or “{* keys to turn the
incomplete declaration into a method or a propedgpectively. Thus, adding a new field
involves typing in the keywords for the access rfied, the type of the field and the field
name. One can also enter a field initializer afterssing “=". When a field initializer is

present, one cannot convert the field to a propmrey method anymore.

Unlike properties or methods, a field block is aotontainer, but a single line of text and
keywords. The field can be selected by prespiiagne] or moving the cursor to the left of
the first element of the field. Alternatively, laflicking with the mouse in a blank area to

the right of the last field element selects thereriield as well:

public int x = 5

Figure 14 - selecting a field

46

Just as for any other block, selecting the fieldgsful, for example, to delete it with the

[Delete] key.

3.5.4.Constructor

The constructor can be inserted in a class orugtslry choosing the “ctor” item from the
completion list. A constructor differs from a methan a sense that the name of the
constructor is already predefined by the editor snithe same as the name of the nearest
containing class. Moreover, different constrains specified for the access modifiers (a
constructor cannot be virtual or sealed). Howeaearonstructor still can be static. A static
constructor cannot have any further access moslifi& soon as the constructor with an
access modifier is made static, all other accesdifrars are deleted automatically. The
editor automatically ensures that only availableeas modifiers are shown in the

completion list and can be inserted.

3.6. Statements

The editor differentiates between two types of estaints — those that can contain
embedded block statements (e.g. control structaraYhose that are normally written in a
single line of code in text editors (e.g. assignineariable declaration, return statement,
etc). Assignment, variable declaration and thernetiatement are represented like usual
lines of text. It was not possible to find a reamue non-text representation for such
statements within the scope of this thesis. Besithestext representation for such items is
good enough and the author didn’t see any pods#isilior improvements.

The editor represented in this thesis can thuddssified as a hybrid editor, which models

most language constructs as blocks, but still seTEs certain concepts as plain text.

Here is a code example that demonstrates usingbtsdd statements inside a method
block:

int Question()
int i = &
i=1i%*7
return i

Figure 15 - statements as text

47

Editing such statements is based on the same jpliescas editing a plain text program.
Pressing[Enter] at the beginning of such a line inserts a new gnipe before the
current one. Pressingnter] at the end of the line inserts a new empty lirnerahe

current line.

3.7.Control structures

One can embed control structure blocks, such as-ldp, directly between the statement

lines. Here is an example of a for-loop betweenééestatement lines:

int Question ()
int i =0, k=20
i=1i=*7

for Jj = 0; J < i; j++
k=1 % 3]
k++

return i

Figure 16 - example of a for loop

At the beginning of each text line within a methummtly, a completion list item is available
for each control structuréor -loop, foreach -loop, while -loop, as well a§ andelse
statements. Just like namespaces, classes and dsethte control structures are
represented by container blocks with a title limed ahe children compartment. Each
children compartment is initially an empty stateméiock itself. A title line usually
contains the keyword that describes the contralctire as well as additional text

information if necessary (for example, a booleapression for aif -statement).

3.7.1.for statement

The title line of a for block contains three textbse separated by two semicolons:

for ; ;

One can move the cursor between the textboxedikesf it was plain text — with the left

and right arrow keys. Pressing {fiab] key moves the cursor to the next textbox.

48

The semicolons are not editable characters — ooeldhreat them as passive separators
that aren’t affected by the editing process. Whendaret is at the end of the first textbox
and the user pressgpace] or[RightArrow] , the caret moves to the beginning of the
second textbox. The same for the end of the setexitbox — it is connected to the

beginning of the third textbox.

3.7.2.foreach statement

Theforeach block is similar in structure to tHer block:

foreach Block child in this.cChildren

Figure 17 - foreach block

The title line of theforeach -container has three textboxes: for the type of the
enumeration variable, for the name of the enunmatiariable and for the object that
implementdEnumerable (typically a collection or a list). When the careiat the end of
the first textbox, pressinggpace] or[Right] moves the caret to the beginning of the
second textbox. When the caret is at the end ofséo®nd textbox, pressing§pace]
moves the caret to the beginning of the third textbVhen the caret is inside any one of
the textbox, pressing tlj€ab] key moves the caret to the next textbox (cycli, from

the third textbox the caret moves to the first agjaiVhen the caret is in any of the
textboxes, pressingDownArrow] or [Return] moves the caret to the children
compartment. It is impossible to delete tire™keyword, it is hard-coded into the title line

of theforeach block, just like semicolons are built into theetitine of thefor -block.

3.7.3.while, if and else containers

while , if andelse control structures are all implemented very simia for and
foreach , but their title line is simpler and only contaims single textbox for an

expression.

3.8.Comments

Although there are great opportunities to implenanrtvenient, rich and active comments

in a structured source code editor, the generaptety of this work as well as time and

49

resource constraints didn’t allow to implement caenits in the current release. Comments
were prioritized out to allow implementing the méumctionality. For some inspiration on

how comments could be implemented, please sex@nge [LutzR1].

Advanced commenting capabilities could make mangudentation and commenting
methods obsolete, because texts, hyperlinks argtasiies could be inserted directly into

the source code document. XML Comments could Hdkst-the-blanks approach.

3.8.1.Types of comments

Traditional editors use the notion of a commentdifferent purposes:
1. Explaining a line (or lines) of code
2. Temporary disabling (“commenting out”) portionsaoide
3. Documenting classes, methods, etc. with XML commsent

Given a structured editor, it probably makes setwsexplicitly implement different
functionality for each purpose mentioned above. |l&xgtory comments could be
implemented as floating or carry-out clouds thatldobe switched on or off. Every

connected code segment could be enabled or disabiledg special controls.

XML comments could be embedded into the main docunflew or carried out to a
separate properties window (XML document propestigslow). When a block is selected
in the main editor, its XML comments (and possibljper meta-information) could be

shown in a separate window.

3.9.Code completion

A structured code editor implemented in this wakactually a component which can be
used both in a stand-alone application or integrateo an existing IDE. In both cases, the
environment into which the editor control is embedidcould provide context-sensitive
information about the program being edited. Micfosalls this technology “IntelliSense”,

and the engine that provides IntelliSense is call8ldnguage service”.

Once a language service is available for the edotrol, it can provide two main code
completion features: showing a list of availablenmbers of a type after the user pressed
the “.” key, or showing the information about paetars of a method after the user presses
the “(* key.

50

4. Architecture

4.1. The Editor Framework

The nature of a structured editor suggests thatusiee interface is composed of different
details — interactive blocks, that together formda@cument. Each block (a control)
represents a language construct and can visuataicoother blocks. When implementing
these blocks, it is wise to carry them out intoepasate library, so that the same basic

building blocks can be re-used for different editor

Indeed, such a library of blocks has been creased #undation for creating structured
editors. From an architectural point of view, this libracgan be called a framework,
because it provides APIs and reusable code toyadedine custom blocks. The framework
allows to model syntactic structures and to proadenteractive visual representation of

such structures.

A structured editor is a .NET component (a usertrobn which depends on this
framework. It could be integrated into an existiBg or hosted in a stand-alone .exe file.
The framework supports the development of strudtwditors using the Microsoft .NET

Framework (version 2.0 as of June 2007).

! The editor framework was designed and developedKiojf Osenkov, Steffen Biichner, Alexander
Kapitanovskiy and Stefan Adam as part of the re$eaffort at the Chair of Programming Languages and

Compiler Construction supervised by Prof. Dr. ret. habil. Peter Bachmann

51

4.1.1.Graphical Controls Library

An important part of the editor framework is a gen@raphical library which provides
capabilities to visualize shapes, embed, layout autd-resize shapes contained in other
shapes, process mouse and keyboard input, etc. &udbrary much satisfy certain
requirements in order to be suitable for creatingtraictured code editor. The most
important requirement is being able to easily managnamic content — automatic
placement and layout of newly created shapes, aittomepositioning of neighbor shapes
during resize, etc. While choosing such a grapHhibahry, a decision was made not to
employ Windows Forms, because Windows Forms pravit heavy-weight and
resource-intensive (OS native) controls which arewell suited for dynamic positioning
and auto-layout of dynamic documents. While Winddwsms may be good for static
content like dialogs and forms, it would definitgbyove problematic for such highly
dynamic and interactive content as structured soooxe. Moreover, the experience of
extending Windows Forms controls has shown, thealbse they are just wrappers around
native Windows Ul elements, the extensibility aéslk controls is limited.

Just as Microsoft Word doesn’t use Windows contfotsWYSIWYG editing and just as
web-browsers custom-implement the entire rendefurgtionality, all structured code
editors (based on this editor framework) use aotastirawing library provided by the
framework, which was specially designed with dymanantent in mind.

During the planning phase (2004-2005) of the entirgiect a decision was
made to implement a graphical controls library freonatch. If at that time the
release of Windows Presentation Foundation [WPF}k w&ailable, most
probably it would have been chosen instead, becaysevides an excellent
object-oriented library of visual controls well ®d for dynamic content.
Unfortunately, WPF wasn'’t available at that time.

4.1.2.Summary of users and roles

We distinguish three major roles:

1. Developers of the editor frameworkprovide several .dll files (NET assemblies),
where all the core functionality and base blocks @efined. The author of this
thesis belongs to the group of the framework degeie

2. Users of the framework develop a structured editotafget editor) for some

programming or markup languager@et language). The framework .dlls are used

52

as a reference. Hence, the users of the framewerknast oftenauthors of an

editor.

3. Users of the target editorwork with the editor to create and edit programs o
documents in the target language. They don’'t nacissequire any .NET IDE or
.NET knowledge for this purpose (unless the taggbtor is for one of the .NET

languages).

Source code of the framework

J

=

Framework binaries (.dll) + Source code of the target editg

N—

Binaries of the target editor (.dll or .exe

Figure 18 — Dependencies of an editor from the fragwork

When we speak of the structured editor framewor&, can mean both the
framework sources as well as the compiled binadepending on the context.

The framework design is based on a layered ar¢bhiee@and consists of four layers. Each
higher layer depends on all the layers below itchERyer is represented by a C# 2.0

Project:

4.2.Utils

The Utils project has no dependencies on other layers.fihededifferent helpers and
auxiliary code used throughout the framework amdetaeditorsUtils provides classes
to simplify work with the file system, calling WI&3API, colors, strings, lists and
collections, timers, common delegates. It also ipiew base classes and interfaces to

model actions and user interface commands.

53

4.3.Canvas

Canvas is a low-level presentation layer (graphical Ity)a which provides drawing

capabilities. It only depends on tbels layer.

An important design decision was not to explicitge GDI+ or any other graphical library
for drawing purposes directly, but instead to aeah intermediate abstraction layer
between the framework and different graphical badke Canvas currently provides
rendering options using GDI and GDI+. DirectX angpe@GL renderers could be
implemented using the same principles.

As measurements have shown, GDI renderer provielsriperformance while
rendering simple geometric 2D content. That is wimy GDI renderer is the
default renderer of th€anvas library.

An important class in théanvas library is theDrawWindow class.DrawWindow is a user
control that provides thRepaint event. When the users want to draw something en th
surface of theDrawWindow, they subscribe to thRepaint event and draw everything
there. TheRepaint event has one parameter of tyi®enderer — subscribers of the

event use this parameter to access drawing furadtipn

DrawWindow is theFacade class to th&€anvas library.

4.4.Controls

As stated above, another design decision was naséd/Nindows Forms to model blocks
visually. TheControls library defines custom classes that model vishapss on the
screen (these shapes are also catl@drols). These controls have no dependence on
System.Windows.Forms and are rendered using tGanvas library of the framework.
They are specifically suited for displaying interae hierarchical data structures on the

screen and allowing the manipulation of the datas®r (using mouse and keyboard).

In this thesis, controls mean the objects from @untrol library of the
framework, and not the Windows Forms controls.

54

The root class of the controls hierarchy is thesstzontrol . Commonly used controls

like TextBox , Label , Button undContainerControl inherit from the clas€ontrol

4.5.Core

Core is the main library of the editor framework. Itfiles the data structurBlock |,
which is used to model an arbitrary language caostrOne can implement custom
language constructs by inheriting from the bases@ck or some other base class and

adding required functionality.

The advantage of the structured editor frameworsgmted in this thesis is that all
language constructs can be treated uniformly. Thegramework can provide services for

all (even future) language constructs:
e Hierarchical data structure (Previous, Next, Par€htldren)
e Atomic operations on the data structure (Add, Mdrsert, Replace, Delete)
« Virtually unlimited Undo/Redo steps and a trangatgystem
* Rendering and scrolling
* Focus and navigation
* Hosting (displaying) the data structure in a Winddworms Control

* Popup menus and drop-down selection (completion)

4.5.1.Blocks and controls

Each block is represented on the screen using taotdrom theControls library. Each

object of typeBlock has a run-time reference to a corresponding objfegipe Control
Note about the OO design of blocks and controls

It is important to understand that “a block HASaoatzol”, and not “a block IS a
control”. Controls have no idea of blocks and hagedependency on ti@ore
library. This gives us the flexibility and freedota reuse controls in other
graphical projects.

The design decision to implement controls outsidia® blocks hierarchy was a
difficult one. In early implementations, the claBkck inherited from the

55

classControl . This turned out to cause problems w@bntainerBlock
which (conceptually) should be inherited both froBlock and from
ContainerControl . Since .NET doesn’t have multiple inheritance (&4
has no mix-ins), one has to choose, whetBentainerBlock should be
inherited fromBlock or from ContainerControl . If ContainerBlock

is inherited fromBlock , the functionality ofContainerControl has to be
doubled in ContainerBlock . If ContainerBlock is inherited from
ContainerControl , the entire code fromlock must be duplicated.

This problem is known as ,burning the base cla8sjood example of burning
the base class is th®ystem.MarshalByRefObject class in the .NET

framework. It clearly should have been an attriiostead. Brad Abrams and
Krzysztof Cwalina talk about this design problenjfDG].

The Bridge design pattern helped to resolve the problem kplacing
inheritance with aggregation. This decision alsovigles more flexibility and
allows automatic data-binding of a container cdrtvaccustom lists (see [WPF]
for the explanation of data-binding).

4.5.2.Actions
Any change to the block data structure at runtisngeparated into two steps:
1. prepare the change (record it into a step desoripé so calledction) and

2. actually apply the change using this description.

Thus, changes are not carried out directly, butfiesse encapsulated in Actions (delayed,
Jazy* execution). This architecture allows to saations in an Undo/Redo buffer (design
patternCommand, to keep history and to let users undo or redp @dmange to the edited

document.

4.6.Implementation of the C# editor

This thesis presents a structured source coder ddita subset of the C# 1.0 programming
language (as defined by the ECMA-334 standard @ME&]). Unfortunately, it was not

possible to fully implement even the C# 1.0 versadrthe language, because this task
requires an effort of much more than six man-martimvever, the implemented subset is

rich enough to provide a good proof-of-concept amdjive an example of a working

56

structured code editor. The editor is based onsthectured editor framework described

above.

A structured editor is most useful when implememetias a stand-alone application, but
inside a full-fledged IDE. Only when integrated hvibther features like class browser,
project explorer, etc. it can provide the conveogenexpected from a modern

programmer’s tool.

The editor presented in this thesis is integratéd SharpDevelop ([SD]), an open-source
IDE for the .NET Framework. It allows to parse ¢ixig source code into its own internal

representation, to work with it and to generates®text again out of it.

57

5. Blocks

5.1.Data structure

This chapter describes the classes of the edigmndwork which inherit from the class
Block . The authors of a structured editor typically inhiom these classes to model their

language constructs.

5.1.1.Tree

At runtime of the target editor, the instances lotk classes are composed together into a
dynamical hierarchical data structure, which isithenemory representation of the edited
program. For instance in a context of a C# cod&edeach block tree corresponds to a

compilation unit.

In different applications there are many differedmes for such a data
structure: parse trees, DOM, AST, etc.
In a good architectural approach the data strustandd have the following properties:

1. The data structure would serve as a model in a Mdsv-Controller pattern. As

a model, it would be unaware of its (perhaps maagjesentations (views).

2. The data structure would provide a set of eventsotdy observers of its changes.
This means, every change of the data structurelghoe tracked by attached

listeners (observers) to the nodes or to the whale. Such event mechanisms

58

could provide data-binding capabilities — automafpciate of all views by every

change of the model as well as keeping everythynglgonized.

3. The view would present a tree which is parallethe model — each node of the

view (a control) would map to the correspondingenotside a model.

However, within the scope of this thesis, no suctadstructure could be created.
Designing a generic, observable, abstract synte s a very complex task. To achieve
the goal of creating a working proof-of-concepttedi this task was simplified in the
following way. The block data structure was givemlyoone view — the corresponding
hierarchy of controls. Blocks explicitly know abouwtontrols, which is a direct
contradiction to the classical MVC pattern. Nevel#iss the scheme proved viable enough
to create a working code editor. Unfortunately, sleenario of attaching another view to

the hierarchy of blocks could not be supportedhigttime.

There is hope that the manufacturers of IDEs wilrgually come up with the
MVC architecture for the source code representatiml that the code model
will be explicitly separated from the views in tbditor windows. Given such a
data structure and provided it is observable, anddceasily adapt the blocks
presented in this thesis to become a view on sutEiaastructure.

5.1.2.Class vs. interface

An interesting experience about designing the bldeiatype is connected with the choice
class vs. interface. At the early stages of framrkwiesign all blocks also implemented the
IBlock interface. When a new member was added to Bloek class, it had to
automatically to be added to th&lock interface as well, because clients were working
with the IBlock interface. Moreover, there were interfaces IfowntainerBlock and
IRootBlock . This turned out to be impractical, becat&leck in reality duplicated the
same entity which was already modeled byBleek class. In [FDG] the authors advise
to prefer classes over interfaces when the whaoliydmas to be modeled. Interfaces are
useful when an existing entity has additionally domply with some contract. Thus,

interfaces are good when adding declared functityrtal existing entities.

As a result of a major refactoring, all interfadbat duplicate entities were
removed from the framework code. This turned oltd@ good decision.

59

5.2.Tree organization

At each hierarchy level, blocks form a doubly lidkist. For this, the clasBlock has
Prev and Next properties. The clasBlock also has a propertfarent of type

ContainerBlock , which is a reference to the containing parenthlo

The Root property of each block references the root blocthe entire tree. The root of
the tree must be of tydeootBlock or inherited from it. If a block or a subtree dbdks

isn’t added to any tredRpot == null), we say it is “hanging in the air”, or “dangling”
Once a block or a subtree of blocks is added tcesivee, thdRoot property of each added

block is set to th&®oot of the entire tree.

The clas<ontainerBlock represents all blocks, which can have children,ambedded
(,contained”) blocks. ContainerBlock.Children is a property of type
IChildrenList . Child blocks are normally visualized as smallectangles inside a

bigger “parent” rectangle. Here is an example ofmespace block containing two class
blocks:

namespace Acme

Block

[
|

All
47
[47]

P [P R S T ~—~1r
{ .dl erBlock

[
|

All
47
[47]

For each block, other blocks in the same linkeddre calledsiblings. The blocks in the

Children list are callecthildren. Parent andRoot blocks are called respectively.

60

Pargnt

Prev] Next
< this >
Children
Children
Head Tail

Figure 19 - a block with its siblings, parent and kildren

The list data structure has proven to be comfogtabd efficient. Every modification takes
only constant time O(1). lterating through all dfetchildren takes O(n) time, but in
practice (since lists in most situations have kss 10 — 20 elements) this overhead is
insignificant. Per-index access is simulated witfm)Ctime but the situation where per-

index access to a child block is necessary is exdherare.

Taking arrays forChildren list would be more memory intensive and less gfit
because changing the data structure and iteratingder happens statistically much more
often than per-index lookup, that's why the O(19Kop time in an array wouldn'’t justify

itself against reallocation costs.

61

5.3.Operations on the data structure

5.3.1.Inserting blocks

The method\ppendBlocks of classBlock appends one or more existing blocks after the

current block:

this.AppendBlocks(new LabelBlock("Newly added"));

This method is overloaded and can accept eitherlEmaomerable<Block> or a
parameters arraydrams Block[]). The block or blocks being added should haver thei

Root property equal taull , otherwise an exception is thrown.

Adding a block which is already added somewhere ldvactually mean
“move”. There is a special operation for movingdi® and it should be used
instead.

If the block on which the metho#éippendBlocks was called is contained in some tree
(Root property is notnull), an AddBlocksAction is prepared and executed
Otherwise, the blocks are added directly, becaustamd-alone block outside any tree

doesn’t have access to afwgtionManager

The AppendBlocks method is marked virtual and so can be overrigen i
subclasses, if necessary.

The methodPrependBlocks is similar toAppendBlocks with the difference that the

blocks are inserted before the current block aridafier it.

5.3.2.Deleting blocks
The virtualDelete() method of a block removes the current block fréw list of its

siblings.

The block object continues to exist as long as ivéing referenced. Later the
block can be re-inserted in any other place inldagk hierarchy.

! See section 6.4 for more information about recayd@ind executing actions.

62

After being deleted from the tree, the blocRi®v , Next , Parent andRoot properties
are all set towll . The block starts to “hang in the air”, which mgdmat it doesn’t belong
to any block tree anymore. When a dangling blocleimserted into some tree, Rgev
Next , Parent andRoot properties are updated accordingly. WheboatainerBlock

is deleted, theRoot property of every block in the subtree is sentdl , their other

properties do not change.
The call toDelete() prepares and runsDeleteBlocksAction

Sometimes it is required to delete the next bloskweell. By overriding the virtual
GetBlocksToDelete() method users can determine the blocks which shoeildeleted

with the current block when it is deleted. The défaimplementation of the

GetBlocksToDelete() method is as follows:
public virtual IEnumerable<Block> GetBlocksToDelete 0
{

yield return this;
}
A good example of overriding this method is in adil which models a namespace in the
structured editor. When a namespace is deletedygkefollowing empty block must be

deleted as well, otherwise there will be two emiplkycks in a row remaining after the

current block. One can overri@etBlocksToDelete() like this:
public override IEnumerable<Block> GetBlocksToDelet e()
{

yield return this;
if (this.Next != null)

{
}

yield return this.Next;

5.4.ContainerBlock

5.4.1.Children

ContainerBlock Is the base class for all blocks which can contatimer blocks at
runtime. EachContainerBlock has theChildren property of typeChildrenList ,

which represents a doubly linked list of all blockstained in th€ontainerBlock

63

5.4.2.Adding blocks to a ContainerBlock
There are two method groups which allow adding kddo the container.

1. Add(IEnumerable<Block>) and Add(params Block]]) add one or more

blocks to the end of thehildren list.
2. AddToBeginning(IEnumerable<Block>) and AddToBeginning(params

Block[]) add one or more blocks to the beginning ofChédren list.

Overloads with thgparams keyword are provided for convenience, when the
user needs to add a single block or a quantityarfids known at compile time.
They are just a shortcut to the other overload Whiaccepts
IEnumerable<Block>

All four methods use delayed execution whenAationManager is available, and add

blocks directly if theContainerBlock is “hanging in the air”.

One can also operate on tlildren collection directly: it provides methodsdd,
Append, Prepend etc. However these operations are more low-levéllacal to the list.
The changes will take place immediately and thedJRddo buffer will not be notified.
Such a change will also not be visible to the wseil the next screen refresh. The focused

(active) block doesn’'t change as well.

5.4.3.FindChildren und FindChildrenRecursive
ContainerBlock also provides several methods to search for tiddks:
e FindChildren<T>() returns all child blocks which can be casted fety.
* FindChildrenRecursive<T>() also searches the whole subtree recursively.

* FindChildrenRecursive<T>(List<T> results) adds found blocks into the

results list, instead of returning them.

This sample code shows how to append an asterittketbext of everyrextBox in the

current container:

64

foreach (TextBoxBlock textBlock in this.FindChildre n<TextBoxBlock>())
{

}

textBlock.Text += "*";

5.5.RootBlock

The clasRootBlock is a subclass aontainerBlock , which is used as a container for
the entire document. Each instance of the dRagsBlock is at runtime the root of some
block tree. Since eadkootBlock is also aContainerBlock it can (and should) contain

child blocks.

The RootBlock is an integration point between the blocks datactiire and the window,
where the block tree is displayed. The authors rofeditor can either use the class
RootBlock directly to add the contents of the document tooit inherit from the
RootBlock class to provide custom functionality or to ovaerthe default behavior. This
code sample shows how the block which models ad@#pdation unit inherits from the

RootBlock class:

using GuiLabs.Editor.Blocks;

namespace GuiLabs.Editor.CSharp

{ public class CodeUnitBlock : RootBlock, ICSharpBlo ck
{ public CodeUnitBlock() : base()
{ this.Add(new EmptyNamespaceBlock());
}
}
}

5.6. HContainerBlock, VContainerBlock

Both HContainerBlock and VContainerBlock are simple containers, which
automatically align their child blocks horizontallfiContainerBlock) or vertically
(VContainerBlock). This code sample shows howi@ontainerBlock can be used to

place four blocks beside each other:

65

public partial class TutorialForm : Form

{
private RootBlock document = new RootBlock();
private LabelBlock captionCelsius = new LabelBlock ("Celsius: ");
private TextBoxBlock value = new TextBoxBlock();
private LabelBlock captionFahrenheit =
new LabelBlock(" Fahrenheit: ");
private LabelBlock result = new LabelBlock();
public TutorialForm()
{
InitializeComponent();
viewWindow1.RootBlock = document;
HCont ai ner Bl ock row = new HCont ai ner Bl ock() ;
row. Add(capti onCel si us, val ue, captionFahrenheit, result);
document.Add(row);
value.TextChanged += value_TextChanged;
}
private void value_TextChanged(
ITextProvider sender,
string oldText,
string newText)
{
double celsius = 0;
double.TryParse(newText, out celsius);
double fahrenheit = celsius * 9/ 5 + 32;
result. Text = fahrenheit. ToString();
}
}

This sample shows a horizontal line where the oarrenter the temperature in centigrade
and it is automatically converted to Fahrenheit.

5.7.LinearContainerBlock

Both HContainerBlock and VContainerBlock are trivial subclasses of the
LinearContainerBlock class, which provides rich possibilities to alitire children

horizontally or vertically.

By default, an instance oflanearContainerBlock behaves lika/ContainerBlock

but the orientation can be changed at runtime tilngetheOrientation property.

66

5.8. TextBoxBlock

Another important type of block is theextBoxBlock (similar to TextBox , EditBox
etc. in common windowing systems). It represergmgle text string on the screen, which

can be edited by the user.

This example adds®extBoxBlock called “name” to a container block:

TextBoxBlock name = new TextBoxBlock();
this.Add(name);

The TextBoxBlock class also has a constructor that accepts thialinidlue of the

displayed string. Th@ext property can be read from or written to:

name.Text = "Class1";
MessageBox.Show(name.Text);

When theText property is set, the following things happen. he fTextBoxBlock
belongs to a block tree with a root, the text cleamg) treated as a transaction and is
recorded in the Undo/Redo buffer. After the charte, entire tree is redrawn on the
screen (if not inside a redraw accumulation coftesd that the user notices the change
visually. Same happens when the user edits the thertugh the user interface (it is
equivalent to setting th@ext property programmatically). If thRoot property of the
TextBoxBlock object isnull (the block “hangs in the air”), the change is iearout

immediately. Nothing is being redrawn in this case.
Reading th&ext property has no observable side effects.

The TextBoxBlock class also provides theextChanged event, which is raised when
the text has actually been changed (by the userogrammatically), and not when the text
change transaction is registered with MeéonManager . This is important, because in a

transaction context the change won’t be visible edrately:

67

[TestMethod]
public void TestSetTextInTransaction()

{

TextBoxBlock name = new TextBoxBlock();
Root.Add(name);

name.Text = "A"; // takes effect immediately
Assert(name.Text == "A");

using (Transaction t = new Transaction(Root))

{

/I takes effect only after

/I the transaction is committed (disposed)
name.Text = "B";

Assert(name.Text == "A");

}

// "B", because the transaction was committed
/I after exiting the using statement
Assert(name.Text == "B");

name.Delete();

It is important to know that th€extBoxBlock uses arextBox control for the physical
representation. The specisyTextBox property provides a direct reference to this
TextBox control. One could use this, for example, to Betdefault minimum width of the

text box in pixels:

name.MyTextBox.MinWidth = 30;

Other than that, th€extBox control provides useful API to work with text, esetion and

the caret position: Text , TextBoxChangePending , TextChanged ,
CaretlsAtBeginning , CaretlsAtEnd , CaretPosition , CaretPositionChanged ,
SelectionStart , SelectionEnd SelectionLength , SelectionText ,
TextBeforeCaret , TextBeforeSelection , TextAfterCaret ,
TextAfterSelection , SetCaretToBeginning , SetCaretToEnd , etc.

5.9. TextBoxBlockWithCompletion

The TextBoxBlockWithCompletion class inherits from th&extBoxBlock class and
provides additional functionality to show the coetpn list. A completion list is a drop-
down list box which appears near the text box wé@me event occurs (the user is typing

something or pressing some key etc.). This cansiee tor different purposes in a target

68

editor — for example, to show a list of methods wiiee user inputs a type name followed

by a dot.

The TextBoxBlockWithCompletion provides theCompletion property of type
CompletionFunctionality , which allows to control, show or hide the comigletlist.
Besides, theTryShowCompletionList method is a shortcut to quickly show the

completion list and to preselect an item basederentered prefix.

5.10.LabelBlock

To model non-editable text on the screehalselBlock can be used:

this.Add(new LabelBlock("("));

The LabelBlock class provides three constructors — an empty anegnstructor that

accepts a default string value and a constructdratcepts afextProvider

One can get and set thext of the label using th&ext property:

LabelBlock info = new LabelBlock("Helpful hint!");
info.Text = "Another hint!";

The user of the editor cannot change the text tyredowever, it is possible to allow the
user to select the label (to put focus on it). Tlowa user to focus the label, set the
Focusable property to true. When a focusable label is fodusiee user can also delete it

by pressing thgDelete] key.

When alabelBlock is initialized using anTextProvider object, it is bound to
automatically display the current value of the tgxbvider object. When the value
changes, th@ext of theLabelBlock is changed automatically to always stay in sync

with the text provider.

69

5.11.UniversalBlock

The UniversalBlock IS an important example of @ontainerBlock . This is a
specialized container that consists of two compants)— a horizontal line compartment

above and a vertical “members list” compartmenbwel

Title line

[
namespace Tesﬂ

Children compartment

Figure 20 - an example of a UniversalBlock

One can put arbitrary blocks in these two compantmd-or example, bBabelBlock and
a TextBoxBlock could be placed into the horizontal compartmerfoton a “header” of
the entire container. At the same time real chititks could be displayed in the vertical

compartment, which is normally indented to the trigh the screen.

this.NameBlock = new TextBoxBlock();
this.HMembers.Add(new LabelBlock("namespace "));
this.HMembers.Add(this.NameBlock);
this.VMembers.Add(new EmptyUsingNamespaceBlock());

The UniversalBlock has two main properties which correspond to theo tw
compartments: HMembers of type HContainerBlock and VMembers of type
VContainerBlock . Additionally, the UniversalBlock contains a collapse/expand
button, which can show or hide the horizontal cortipant. TheUniversalBlock itself

is implemented asVaContainerBlock containingHMembers andvVMembers.

5.12.ButtonBlock

The ButtonBlock models a usual button from common graphics interiéoraries. The
user can push the button with the mouse or by pig§BSnter] or [Space] when the

button has focus. The button can contain arbitcarjtent, most often some text, a picture

70

or a combination of both. The overloaded constmsctd theButtonBlock class allow to

create a button with text, with a picture or withtln

The following sample code shows and hides a latdetn the user clicks on a button:

public class TutorialRootBlock4 : RootBlock

{
public TutorialRootBlock4() : base()
{
button = new ButtonBlock("Hide the text");
text = new TextBoxBlock();
this.Add(button);
this.Add(text);
button.Pushed += button_Pushed;
}
void button_Pushed()
{
text.Visible = !text.Visible;
button.Text = "Text.Visible ="
+ text.Visible. ToString();
}
TextBoxBlock text;
ButtonBlock button;
}

5.13.EmptyBlock

EmptyBlock models the insertion space between two blocksrevhew blocks can be
inserted. It looks like an empty text box where tiser can place focus and start typing.
When the text is entered, a drop-down completishi§ shown offering what to insert
instead of the current empty block. The clagnptyBlock inherits from
TextBoxBlockWithCompletion and that is why working with the completion list i

absolutely the same as DgxtBoxBlockWithCompletion

In the following code sample a special empty blixldefined, which allows inserting
TutorialUniversalBlock and another copy of empty block after itself. Toopy is

necessary so that an empty block always separatesrtiversal blocks.

71

using GuilLabs.Editor.Blocks;
namespace GuiLabs.Editor.Sample

public class TutorialEmptyBlock : EmptyBlock

{
protected override void Fillltems()
{
Completion.AddCreateBlocksltem
<TutorialUniversalBlock, TutorialEmptyBlock>
("universal");
}
}

To define the contents for the completion list, tieCompletion property, just like with

usualTextBoxBlockWithCompletion

The most common completion list item for an empiyck is: “insert block(s) after the

current empty block”. This is represented by arecbf typeCreateBlocksltem

CreateBlocksltem newltem = new CreateBlocksltem(
"universal",
new Type[]
{typeof(TutorialUniversalBlock), typeof(TutorialE mptyBlock)},
this);
this.Completion.ltems.Add(newltem);

This code inserts a new item in the completion gtich is shown as “universal”. When
the user selects this entry from the list, two fdecks are inserted after the current empty

block, of typesTutorialUniversalBlock andTutorialEmptyBlock

There is a shortcut for this functionality — the thuel AddCreateBlocksltem of the

CompletionFunctionality class:

Completion.AddCreateBlocksltem
<TutorialUniversalBlock, TutorialEmptyBlock>
("universal);

This does basically the same as above, but iseshamt] easier to read.

One shouldn’t mix the completion list items to d¢eelocks with the blocks
themselves. The completion list items are objectd ¢ype
CompletionListitem , Which can execute any functionality when clicked.
For example, an object of tygereateBlocksltem creates new blocks and
adds them to the tree. ThuBreateBlocksltem is a sort of a prototype of

72

blocks, it contains instructions on how to create/blocks and where to place
them. That's why it doesn’t store any concrete kdodut rather their types —
when clicked, it creates new instances of thosesygnd adds them after the
current empty block.

Beside CreateBlocksltem , which inserts new blocks after the curr&mptyBlock ,
there is alsdReplaceBlocksltem , which replaces the curregimptyBlock with new

blocks:

Completion.AddReplaceBlocksltem<TutorialUniversalBl ock>("universal2");

This code creates a completion list item to replac&mptyBlock with an instance of

TutorialUniversalBlock

Other sorts of completion list items can be defingd the users of the
framework. It is sufficient to inherit from th@ompletionListitem class.
For exampleCreateBlocksltem andReplaceBlocksltem themselves
inherit fromCompletionListitem

73

6. Implementation of the functionality

6.1. Designing the user interface

6.1.1.Displaying a RootBlock inside a ViewWindow

Given a block tree (the document), it is necessarghow this document to the user. A
special Windows Forms contraglewWindow (defined inCore) takes care of showing any
RootBlock with its children on the screeviewWindow embeds the world of blocks into
the world of Windows Forms controls and is an im@or element of the user interface.

ViewWindow is based on therawWindow class from th&€anvas library.

Suppose we have already defined all blocks incydire classMyRootBlock . We also
have a Windows Form with an emptiewWindow control. Now we’d like to display the
instance ofMyRootBlock class in theViewWindow control. TheViewWindow class

provides a special property for this, which is ediRootBlock :

74

public frmMain()

{
InitializeComponent();
/I display the block tree in the ViewWindow contro
viewWindow1.RootBlock = Document;
}
Il create an instance of RootBlock and save itin t he Document property

private MyRootBlock mDocument = new MyRootBlock();
public MyRootBlock Document

{

get { return mDocument; }
set { mDocument = value; }

}

When the propertywiewWindow.RootBlock is set, a complex binding process takes
place, which subcribes to the events of RwtBlock and initiates the communication.
Mouse and keyboard events from tiewWindow are being re-routed to tiootBlock |,
drawing of theviewWindow contents is being delegated to BmotBlock as well. When
the RootBlock needs to be scrolled/iewWindow manages the scrollbars. All this

happens transparent for the user.

6.2.Focus

Blocks can be focused. This means, each instanteeaflassRootBlock at runtime can
have a reference to a single currently active blfekich is visually highlighted and

receives the keyboard input).

Not all blocks can be focused. For example;antainerBlock which only exists to
group other blocks, cannot be focused by defaultaelBlock isn’t normally focused
as well. TheCanGetFocus property of such blocks returfigise . If it is necessary to

make a block focusable, set thacusable property to true.

The user can focus a block by clicking on its cointvith the mouse. When the user clicks
on a non-focusable block, the mouse event is rotatede nearest focusable parent up the
parent chain. Normally the user can also move fautis the keyboard arrow keys. This
functionality is automatically implemented for mdmstsic blocks. A depth-first traversal of
the tree structure induces the order of blocks lclvthey are traversed. Thus, all of the
blocks in any tree can be put in a numbered seguetitt the following property: each
block precedes all its children and the next sghlaomes after all the children of the

current block. We'll call this order the block orde

75

The classesBlock and ContainerBlock (the most important base blocks of the
framework) provide useful API to control the focddmost all of these methods can be

overriden if necessary.

* void SetFocus() - gives the block focus, if possible. The scréempdated
automatically, if the block has a root block (isthim a tree). Blocks, which are
currently invisible or disabled, cannot be focugid example, blocks from the
collapsed compartment of &niversalBlock cannot be focused until the
compartment is expanded again). The method CallsGetFocus to determine if

the block can currently receive focus.

e void SetDefaultFocus() — sets focus to the container block the first time
after its creation. Override this method to give thcus to some part of a complex
block right after its creation. This method is edllautomatically for blocks that are
added to the tree.

* void RemoveFocus() — moves the focus somewhere else away from therdurre
block, if possible. If the current block wasn’t teed, the method has no effect.
RemoveFocus is normally used before deleting or hiding blosksthat the focus
remains on some existing neighbor block. The cdrmemplementation doesn’t
guarantee, which block receives focus and this Wehas deliberately not

specified.

* bool CanGetFocus { get; } — determines, if a block can currently receive
focus. A block can receive focus if it is visiblenabled, contained within a tree
(Root is notnull), not within a collapsed or hidden subtree and-itsusable

property is set to true.

* IBlock FindFirstFocusableChild() — returns the first focusable child block
of the current block, if such a block exists, notherwise. Searches depth-first
recursively, without considering the current blodBan only be non-null for

containers.

e IBlock FindLastFocusableChild() — returns the last focusable child block
of the current block, if such a block exists, notherwise. Searches depth-first
recursively from bottom to top, without consideritng current block. Can only be

non-null for containers.

76

IBlock FindFirstFocusableBlock() — returns the first focusable child block
of the current block, if such a block exists, @elf if focusable, null otherwise.
Searches depth-first recursively, starts with tlherent block. Functionality is

similar toFindFirstFocusableChild , but the current block is tested too.

IBlock FindLastFocusableBlock() — returns the last focusable child and
the current block, if no focusable children werarfd. If no blocks were focusable,

returns null. Works similar tBindLastFocusableChild

IBlock FindPrevFocusableBlock() — returns the previous focusable block in
the block order, but stops searching and returiisafter all the siblings have been

searched. Thus, it will never return the blockseparbut will stop and return null.

IBlock FindNextFocusableBlock() — returns the next focusable block in the

search order, but only searches the siblings.

IBlock FindPrevFocusableBlockinChain() — returns the previous
focusable block in the block order. Searches uph®RootBlock and works

bottom to top and depth-first.

IBlock FindNextFocusableBlockInChain() — this is the natural
enumerating method, that returns the next blocthenblock order, up to the last

block of the tree.

bool SetCursorToTheBeginning() — a more fine-granular version of
SetFocus , that differentiates between the start and the ehd block. For
example, for arextBoxBlock it would set focus to the block and position the
caret at its beginning. For less granular block nehthere is no difference, the
entire block is focused (as wusual). For a containelock, calls

SetCursorToTheBeginning recursively for the first focusable child.

bool SetCursorToTheEnd() — just like SetCursorToTheBeginning , but
attempts to set the focus to the end of the bléak. a container block, calls

SetCursorToTheEnd recursively for the last focusable child.

77

6.3.Events and user interaction

To allow full user interaction, the author of austured editor has to implement the
reaction of the editor to the user input actionsr. &le, the mouse clicks on a block
have to be processed. Blocks and controls providet af events which are raised when

the user input has to be processed.

6.3.1.Block.KeyDown event

All Blocks define thekeyDown event. This event is raised for the currently smmliblock

when the user presses a keyboard key.

We illustrate this on the example of tleeeach -block in the C# editorForeachBlock
models the foreach statement of the C# language and is representeda by
UniversalBlock , which has three text boxes in its horizont#iiémbers) compartment.
We’'d like to enable the user to switch focus betwéeese three text boxes using the

[Tab] key. This simplified code shows how to processkigygdown event:

78

public class ForeachBlock : ControlStructureBlock

{
private ExpressionBlock IteratorType = new Express ionBlock();
private ExpressionBlock IteratorName = new Express ionBlock();
private ExpressionBlock CollectionName = new Expre ssionBlock();
public ForeachBlock() : base("foreach")
{
this.HMembers.Add(new LabelBlock("("));
this.HMembers.Add(IteratorType);
this.HMembers.Add(new LabelBlock(" "));
this.HMembers.Add(IteratorName);
this.HMembers.Add(new LabelBlock(" in "));
this.HMembers.Add(CollectionName);
this.HMembers.Add(new LabelBlock(")"));
IteratorType.KeyDown += IteratorType_KeyDown;
IteratorName.KeyDown += IteratorName_KeyDown;
CollectionName.KeyDown += CollectionName_KeyDown;
}
void IteratorType_KeyDown(IBlock Block, KeyEventAr gse)
if (e.KeyCode == System.Windows.Forms.Keys.Tab)
{
IteratorName.SetFocus();
}
}
}

6.3.2.Block.ParentChanged event

ParentChanged is another event which all of the blocks possésis raised when the
block gets a new parent, that is when it is fidkled to som€ontainerBlock or moved
to anotherContainerBlock . When the block is deleted, iBarentChanged event is

raised as well.

6.3.3.Children.CollectionChanged

The IChildrenList interface represents an observable collectiomrdvides several
events which notify the clients when the childreflection has changed. The most general
event is theCollectionChanged . It is raised when a block has been inserted tetbler
replaced. In case when several blocks are addeshwved at the same time, the event is

raised for each change separately.

As an example we consider a hypothetical featurth@{C# editor which visually displays
a total number of methods for each class. Thewatg code solves the problem:

79

public class ClassBlockWithMethodCounting : ClassBI ock

{
public ClassBlockWithMethodCounting() : base()

{

/I prepare a new horizontal container for our “stat us bar”
HContainerBlock infoLine = new HContainerBlock();

/I add three components to the infoLine,
/I the middle one will be changed dynamically
infoLine.Add(new LabelBlock("This class has "));
infoLine.Add(statistics);
infoLine.Add(new LabelBlock(" methods."));

/I add the line to the class block
this.VMembers.AddToBeginning(infoLine);

/I here we subscribe to the CollectionChanged event
this.VMembers.Children.CollectionChanged += Child ren_Changed;

}

private LabelBlock statistics = new LabelBlock("0");

void Children_Changed()
{

/I get the list of all methods in this class
ReadOnlyCollection<MethodBlock> methods =
this.VMembers.FindChildren<MethodBlock>();

/I update the text with the current value
statistics. Text = methods.Count. ToString();

6.3.4.RootBlock.ActiveBlockChanged

EachRootBlock provides a specidictiveBlockChanged event which is raised after a
new block is focused. This is useful for exampldéew it is necessary to display some
information about the currently focused block (Example, context help). This code

sample shows the type of the currently focusedkbloc

80

public partial class TutorialForm : Form

{
private TutorialRootBlock document = new TutorialR ootBlock();
private LabelBlock info = new LabelBlock();
public TutorialForm()
{
InitializeComponent();
viewWindow1.RootBlock = document;
document.Children.Add(info);
document.ActiveBlockChanged += document_ActiveBlo ckChanged,;
}
void document_ActiveBlockChanged(
IBlock oldFocused,
IBlock newFocused)
{
if (newFocused != null)
{
info.Text = "Focused: " + newFocused.ToString();
}
}
}
The propertyRootBlock.ActiveBlock returns the currently focused block of the tree.
6.4.Actions

Each operation on the block data structure (addiegaming, deleting etc.) can be
recorded as an undoable action. Every change ificglypseparated into two steps:

preparing an action and (possibly much later) mgui.

This is an implementation of tf@ommanddesign pattern (see [GoF]). But we
use a slightly different terminology: the GoF commua(the encapsulated
operation) is called aAction in the editor framework, whereas each user input
unit (an encapsulated menu item or a toolbar itengplled aCommand. Thus,
commands invoke actions, but remain independentations. Commands
pertain to the Ul and actions are Ul independent @amly operate on the data
structure.

This design pattern demonstrates the principleebdybd execution, which was probably
inspired by the functional programming languagelsene the code can be treated as data

and executed in a lazy manner, upon request.

81

Each action is represented by an object of tyygdon . ThelAction interface has two
important methodsExecute() = and UnExecute() . The Execute() = method actually

runs the encapsulated action amExecute() reverses it back.

6.4.1.History of executed actions

When an action is executed, it is added to theofisll executed actions — the Undo/Redo

buffer, or action “history”. This buffer is repreged in memory as a doubly linked list.

Start state After the first action After the secaction

O<—> Action1 4—>O<—> Action2 4—»@

Current state

Figure 21 - sample history of actions (two actionsave been executed so far)

The green circles represent states of the datatsteuand the yellow rectangles represent
actions that transition between the two states.dlhe arrow shows the current state. The
objects that represent states in the list carrynfiamation and are only used to better

model the action history.

6.4.2.Undo/Redo

Each action can not only be executed, but alsdbeaimdone. When an action is undone, it
is not deleted from the list, but the pointer te turrent state is shifted to the left.

Start state After the first action After the second action

Q<—> Actionl <—>O<—> Action2 4—»@

Current state

Figure 22 - Action2 was undone

82

When the pointer moves to the left, it encountBesAction2 and calls it8nExecute()
method. The “Redo” operation moves the pointerhi® ight and calls th&xecute()

method on the next encountered action.

The “Undo” operation is accessible when there at®as to the left of the pointer. The
“Redo” operation is accessible when there are mstio the right of the pointer. When
there are actions to the right of the pointer ttzat be redone and the user records a totally
new action, all earlier actions to the right of ganter are discarded (the user chose not to
redo them but to record a new action manually)s Ti@w action is placed to the end of the

list and the pointer is set to point to it:

Start state After the first action

O4—> Actionl

Action3 HO

Action3 was manually recorded by the user
after Action2 was undone. Action2 is
discardec

Current state

Figure 23 — Redo buffer is discarded

This implementation is a little bit different frothe traditional implementation

with two stacks — one for undo and one for redas hore flexible and allows

for providing more complicated redo scenarios i filiture, such as preserving
the redo actions in a tree and allowing the usehtmse from several possible
actions to redo. Thus the user could try doing ageril, undo, try scenario 2,
undo and then when redoing, not only scenario 2ldvbe possible, but the

choice between scenario 1 and scenario 2.

6.4.3.Implementation

The ActionManager class implements the Undo/Redo buffer of a documen
(RootBlock). EachRootBlock has a reference to its dedicatedionManager via the
ActionManager property. When a neWRootBlock is created, it\ctionManager is

created automatically. ThictionManager has the following members:

83

bool CanUndo { get; }

Returns true if there is an undoable action in
Undo/Redo buffer.

bool CanRedo { get; }

the

Returns true if there is a redoable action in|the

Undo/Redo buffer.

the internal current state pointer.

void RecordAction (lAction

existingAction);

Inserts a newAction to the undo buffer. If

there is a transaction which is currently bej

the

void Undo(); Undoes the last action and decrements
pointer to the current state.
void Redo(); Redoes the last undone action and increments

ng

recorded, the action is added to the transaction,

otherwise thé\ction is executed.

IActionHistory History {
get; set; }

A reference to the doubly linked list with the

actions and states.

With the help of this functionality one can eadilgverse the saved actions, undo, redo and

record new actions. The following code undoes @ddes the last action:

rootBlock.ActionManager.Undo();
rootBlock.ActionManager.Redo();

This operation can be called from every place englogram, including the user interface.

That is how one can implement the Undo and Redaimehthe application.

6.4.4.Kinds of actions

The most important classes of the framework, whiggbresent actions, inherit from the

RootBlockAction class. They are:

* AddBlocksAction —inserts new block(s) after specified block othte end of the

blocksChildren list.

* PrependBlocksAction

— prepends block(s) before specified block.

84

* ReplaceBlocksAction — replaces the given block with other block(s).
* RemoveBlocksAction —removes one or more blocks from the block tree.

* RenameltemAction —renames a text item (mostly thextBoxBlock).

These actions accept already existing blocks aanpeters and do not create blocks

themselves. The blocks must be created externadlypassed to the action.

6.4.5.Creating the action explicitly using the constructo

One can directly construct the necessary actiorecbbjising one of the predefined
constructors. The following code inserts a nestBoxBlock after the current block, so

that the action is registered with thetionManager and executed:

AddBlocksAction action = new AddBlocksAction(this.P arent, this);
action.PrepareBlocks(new TextBoxBlock());
this.ActionManager.RecordAction(action);

This way is the most flexible and allows full caitto configure and prepare the action.
The disadvantage of this way is that it is mostlptaof code — instantiating, configuring

and running the action.

6.4.6.Methods on the Block class

The Block class provides several shortcut methods to perfoperations on the data
structure, which automatically prepare and exeoetessary actions. The following code

does absolutely the same as the previous code sampl

this.AppendBlocks(new TextBoxBlock());

This version is much more expressive and easies¢o TheAppendBlocks method takes
care of preparing and running the action for usiolActionManager is available for the
current block (when it is not within any tree), thetion is executed directly; i.e. the block

is added immediately.

6.4.7.ActionFactory

The ActionFactory class provides shortcut methods which create atutns actions
without the necessity to explicitly create the @ctbbject. Let's rewrite the code above

using theActionFactory class:

85

AddBlocksAction action = ActionFactory.AddBlock
(this, new TextBoxBlock());
this.ActionManager.RecordAction(action);

This way is useful when the caller wants to haveess to the action before it goes to the
ActionManager . It is as flexible as directly creating an actiout is still less verbose

when compared to explicitly creating an action.

6.4.1.Transactions

Transactions represent a powerful way to groumastinto atomic operations that can be
treated as a whole (design patt€@mmand. Here’s an example of a using a transaction —

here a Move operation is implemented as a compasiti Delete and Add operations:

public static void MoveBlock(ContainerBlock newPare nt, Block blockToMove)

{

using (Transaction t = new Transaction(newParent.R oot))

blockToMove.Delete();
newParent.AppendBlocks(blockToMove);

}

Transactions are undone and redone as a singakthen a transaction is created, the
ActionManager switches into recording state — instead of runnivggactions directly, it
starts accumulating them in a transaction thatisagopened. Other transactions can be
registered this way as well. As soon as the Igsidvel transaction goes off the stack (its
Dispose() method is called), the ActionManager goes baak the execution state and

runs the entire complex transaction.

After an action is executed, the view where theckdoare drawn \{(iewWindow) is

repainted automatically, so that the user can Beechanges on the screen. To prevent
multiple repaintings during a transaction, all pi@g inside the transaction scope is
suppressed and the entiRootBlock is repainted only once after the transaction
completes. If transactions are nested, only thddawe@l transaction causes a repaint when
finished. To prohibit repainting after a transawtis done, add the following code to the

transaction:

86

t.AccumulatingAction.ShouldRedrawWhenDone = false;

6.4.2.UndoBufferChanged Event

The ActionManager class provides adndoBufferChanged event. This event is raised

when the Undo/Redo buffer is changed — when adagugactions, undoing or redoing.

The following code sample demonstrates how oneacémmatically react to any change of

the document (here we automatically call a hypathbAutoSave() method):

public partial class TutorialForm : Form

{

private TutorialRootBlock document = new TutorialR ootBlock();

public TutorialForm()
{

InitializeComponent();

viewWindow1.RootBlock = document;
document.ActionManager.UndoBufferChanged +=
ActionManager_UndoBufferChanged;

}

void ActionManager_UndoBufferChanged()
{

}

document.AutoSave();

6.5.Controls

It is important to understand that blocks represelugical data structure which is used to
model a language construct. Blocks do not store\aswyalization information directly.

Instead, controls are used to represent blockh@sdreen.

The classBlock has the propertyyControl of type Control . This is a block’s
reference to the corresponding control object, tvhstores information important for
visualization and interaction. Each block knows &aah access and work with its own

control.

Blocks are also responsible for creating and manggtlieir controls as well.

87

| Block Y | = myControl |".Cnntrnl

<

| Abstract Class Class

. + ShapeWithEvents

o AN e |\ J
| ContainerBlock 9| { ContainerControl 9}
| Abstract Class ! | Abstract Class
| * Block | | ¥ Control
i i i w3

| LinearContainerControl (¥) |
Class

+ ContainerControl
-

4

_‘j"‘ MyListControl
Class

| LinearContainerBlock
+ ContainerBlock

‘ RootBlock _"’f MyRootCantral RootControl

4
<

Class Class
¥ LinearContainerBlock + LinearContainerControl
-

Figure 24 - parallel hierarchies of blocks and combls

The following sample shows how to set the minimalttv of a text box by accessing the

TextBox control of theTextBoxBlock class:

public class TutorialRootBlock3 : RootBlock

{
public TutorialRootBlock3() : base()

{
HContainerBlock con = new HContainerBlock();
this.Add(con);

TextBoxBlock text = new TextBoxBlock();
con.Add(text);
con.Add(new LabelBlock("// end of the text box"));

text. MyTextBox.MinWidth = 40;

The propertyMyTextBox is similar toMyControl , but it is more exactly typed: it returns
an object of typ&extBox instead of returning an object of tygentrol . Thus the users

do not need to castyControl to theTextBox type.

EachControl provides a rich choice of events, which are raiggdnouse or keyboard
input. Here is an example where the backgroundrcofothe document is randomly
changed when the user clicks on a label. The cumemise cursor coordinates are being

shown as well:

88

public class TutorialRootBlock5 : RootBlock

{
public TutorialRootBlock5() : base()

{
label = new LabelBlock("Click me");
mouseCoords = new LabelBlock();
this.Add(label, mouseCoords);

label.MyControl.MouseDown += MyControl_MouseDown;

this.MyControl.MouseMove += delegate
(MouseEventArgsWithKeys Mouselnfo)
{

k

this.MyControl.Style.FillStyleInfo.Mode =
FillMode.HorizontalGradient;

mouseCoords.Text = Mouselnfo.X + "; " + Mouselnf o.Y;

}

LabelBlock label, mouseCoords;

void MyControl_MouseDown(MouseEventArgsWithKeys Mo uselnfo)

{
this.MyControl.Style.FillStyleInfo.FillColor

= GetRandomColor();
this.MyControl.Style.FillStyleInfo.GradientColor
= GetRandomColor();
this.MyControl.Redraw();
label. Text = "Thank you!";

6.6. VisibilityConditions

It is possible to prevent some completion list gefnom being shown under some
conditions. For instance, when a block can onlyniserted once, the menu item should

check if such a block already exists before belmmns in the completion list.

A mechanism which determines iffampletionListitem should be shown or not relies
on a list of so called visibility conditions. Eaatondition is an object of type

ICondition

public interface ICondition

{
bool I1sTrue();
}
EachCompletionListitem has a list of such conditions. The item is onlsiblie when

all of the conditions are true (for ealdondition itsIsTrue() method returngue).

89

At the beginning the list is empty and hence althef conditions are true — the
item is visible.

The following sample code adds a visibility constrao the “text” item, to allow not more

than 3TextBoxBlocks within the entire tree:

public class TutorialEmptyBlock : EmptyBlock

{
protected override void Fillltems()
{
CreateBlocksltem createText =
Completion.AddCreateBlocksltem<TextBoxBlock>("te xt");
MoreThan3TextBlocksCondition createTextVisible =
new MoreThan3TextBlocksCondition(this);
createText.VisibilityConditions.Add(createTextVis ible);
}
private class MoreThan3TextBlocksCondition : ICond ition
{
public MoreThan3TextBlocksCondition(EmptyBlock pa rent)
{
Parent = parent;
}
private EmptyBlock Parent;
public bool IsTrue()
{
ReadOnlyCollection<TextBoxBlock> textBoxes =
Parent.Root.FindChildrenRecursive<TextBoxBlock>();
return textBoxes.Count < 3;
}
}
}

90

7. Implementing the C# editor

We will now describe how the structured editor feamork was used to create a source

code editor for the C# programming language.

7.1.The project structure

The editor component could be used either in adslane application or hosted inside an
IDE. Some feautures of the editor (e.g. code cotigple will only be available when
hosted within some IDE. At the same time, the editimponent is generic and does not
depend on any specific IDE. Instead of hard-codivgydependency, the editor provides
flexible extension points where the host could plugnd provide necessary information to
integrate with the editor.

The editor itself is implemented as a library abdds and additional functionality named
CSharpBlocks and packaged in a .NET Framework .dll assembly
(GuiLabs.Editors.CSharp.dll). The editor assembbferences the four framework
assembliesUtils , Canvas, Controls andCore . It is independent of any other IDE

specific assemblies.

91

7.2.Defining data structures (blocks)

The core of the editor are classes that model Ggulage constructs: namespaces, types,
members, parameters, access modifiers, contrattstes and some additional auxiliary

blocks which do not represent any language cortstthemselves.

7.2.1.CodeUnitBlock

A C# code compile unit is represented by @ueleUnitBlock class, which inherits from
RootBlock . Initially, a CodeUnitBlock object contains one instance of the

EmptyNamespaceBlock class.

7.2.2.EmptyNamespaceBlock

An EmptyNamespaceBlock doesn’'t model any language concept directly; pirésents
an insertion space between two namespaces or ggardtions. This class inherits from
EmptyBlock and defines th€illitems() method, which serves to fill the completion

drop-down list:

protected virtual void Fillltems()
{
ReplaceBlocksltem usingltem =
Completion.AddReplaceBlocksltem
<UsingBlock,EmptyNamespaceBlock>("using");
usingltem.VisibilityConditions.Add
(
new DelegateCondition(delegate
{ return this.Prev == null; })

);

AddIitem<NamespaceBlock>("namespace");
AddItem<ClassBlock>("class");
AddItem<StructBlock>("struct");
Addltem<InterfaceBlock>("interface");
AddItem<EnumBlock>("enum");
AddItem<DelegateBlock>("delegate™);

AddEmptyltem("public");
AddEmptyltem(“internal™);
AddEmptyltem("abstract");
AddEmptyltem("sealed");
AddEmptyltem("static");
AddEmptyltem("partial);

Theusingltem (which appears as the word “using” in the completist) is an item of

the completion list which (when selected from tlmepddown) replaces the current empty

block with an instance of UsingBlock followed by a new instance of

92

EmptyNamespaceBlock . It is only visible in the completion list when eth
EmptyNamespaceBlock is the first block within its parent. This assutbat the using

declaration can only be inserted at the top of GedeUnitBlock or at the top of a

namespace.

namespace Test

|
=] interface ;I
== internal

2] namespace
== partial

== public

== sealed

== static

- ETEE—

Figure 25 - completion list of an EmptyNamespaceBak

To enforce the constraint that the completion itisin should only be visible within the
first EmptyNamespaceBlock , a so-calledVisibilityCondition is added to the
item’s VisibilityConditions collection. For an item to be physically showntle
completion list, all of the visibility conditions unst be true at the moment when the drop-
down list is displayed. MelegateCondition means that every boolean method can be
used. In this case, we use an anonymous delegstéetits if the current block is the first

one in its parent’s children list.

Anonymous delegates are a feature introduced i2©#which implements
closures in the language. Thanks to the closureemin‘this " in our code is
captured and bound to tEenptyNamespaceBlock instance.

Unfortunately, features of C# 2.0 are not suppotigdthe structured editor
itself (at the moment of this writing), but at ledsey are used extensively in its
own source code.

A line

AddItem<NamespaceBlock>("namespace");

basically defines an item titled “namespace” whicteates a new instance of a
NamespaceBlock and adds it after the curreBtnptyNamespaceBlock . It also inserts a
new EmptyNamespaceBlock , so that there is always exactly one

EmptyNamespaceBlock instance between twdamespaceBlock objects.

93

There are two main ways, how a new type declaratonld be created using
EmptyNamespaceBlock's ~ completion list. The first one is straightforwaadd is based
by explicitly selecting the appropriate item (“das‘interface”, etc.) from the completion

list.

The other way is incremental and is very similahtav we would type it in a plain text
editor. For example, one would type “public classfl{* to create a new class in a text

editor. Exactly this is supported by the structueddor as well.

A line

AddEmptyltem("public");

defines that the word public starts defining a rgpe declaration at the current position.
When the word gublic " is selected, another completion list is presentdtch provides

the user with the exact context-dependent choigmssible keywords:

public d
== abstract =
2
2] delegate
=] enum
=] interface
= internal
== partial —
== sealed

== static =]

Figure 26 - defining a type incrementally

Some temporary blocks are created during the inenésh process, but in the end, a new
type declaration block is created (unless the wsercels by undoing or pressing the

[Backspace] key).

7.2.3.UsingBlock

Mostly, the class provides methods to manage usnagnamespace declarations within the

code compile unit:

Member type:| Member name: Description:
Property UsingSection Returns the UsingBlock of this
CodeUnitBlock , or null if no using

94

declaration was defined. Each
CodeUnitBlock can contain at most one
UsingBlock at the beginning of its children
list, which is guaranteed by a special visibility

condition on the dsing ” completion list item.

Method AddUsing Inserts a new using directive into the

UsingSection . Automatically creates a new

UsingSection if this is the first using
directive.
Method AddNamespace Adds a new namespace declaration to |the

CodeUnitBlock . Automatically surrounds the
namespace declaration Dy

EmptyNamespaceBlock instances.

7.2.4.UsingDirective

UsingDirective represents a single line in the using containet iaherits from the

TextLine class.

The interesting part is two methods that providdecoompletion after the user presses a
[Dot] key after a part of a namespace name. The firstgets a list of namespace name

continuations from the language service, if ituailable:

public IEnumerable<string> GetNamespaces()

{
LanguageService service = LanguageService.Get(this);
if (service = null)
string namespaceStart = GetNamespacelLeftFromCaret 0;
return service.GetNamespaces(namespaceStart);
}
return Strings.EmptyArray;
}

The other method adds a list of namespace nantke ttnmpletion list:

95

public void FillCompletionWithNamespaces(
IEnumerable<string> namespaceNames)

{
Completion.ltems.Clear();
foreach (string s in namespaceNames)
{
Completion.AddTextCompletionltem(s, this, Icons.N
}
}

7.2.5.CodeBlock

CodeBlock is a base class for many other blocks inGBearpBlocks

from UniversalBlock

7.2.6.Type declaration blocks

amespace);

library. It inherits

and adds minimal common functionality to its destamnts.

The implementation of blocks that model types isstiyotrivial. It is enough to mention

that these blocks eventually inherit from thaversalBlock

and present a compartment

with child blocks. The following diagram illustrat¢he inheritance tree of these classes:

UniversalBlock
Class

+ ContainerBlock
-

£

(LineBlock

Class

+ HContainerBlock
-

£

| CodeLineBlock

| CodeBlock ¥ | ¥
Class Class
=+ UniversalBlock + LineBlock
| EnumBlock Y | | InterfaceBlock ¥ | | ClassOrStructBlock (¥ | | DelegateBlock ¥
Class Class Class Class
+ CodeBlock + CodeBlock + CodeBlock =+ CodeLineBlock
FAY
| I
| ClassBlock ¥) | | StructBlack ¥
Class

+ ClassOrStructBlock

Figure 27 — block classes that model type declaratis

+ ClassOrStructBlock

Most of these classes define helper functionabtylétermine the parent class and other

useful information:

96

public ClassOrStructBlock ParentClassOrStruct

{
get { return this.ParentParent as ClassOrStructBlo ck; }
}
public NamespaceBlock ParentNamespace
{
get { return this.ParentParent as NamespaceBlock; }

public bool IsNested
{

}

get { return ParentClassOrStruct != null; }

Also, they contain child blocks to define the naofethe type and access modifiers,
represented byextBoxBlock andModifierContainer respectively.
7.2.7.Blocks that represent type members

This class diagram shows the block classes whidtteirtgpe members:

':',I:" ICSharpBlock

£

[CodeBlack
Class
+ UniversalBlock

FAY

|

MethodOrProperiyAccessor (¥ |

(FieldBlock

¥
Class Class
+ CodeLineBlock + CodeBlock

I.-. -\.I |-.. -\-I |..- ‘.|
[MethodBlock ¥ | [PropertyAccessorBlock (¥ | [PropertyBlock ¥ |

Class Class Class
+ MethodOrPropertyfcee... + Method CrPropertyAccessar + CodeBlock
FAY

ﬁf‘ SetAccessor
jh GetAccessor

A ~
Y) Y
[PropertyGetBlock (¥ |
Class
+ PropertyAccessorBlock

| PropertySetBlock (¥ |
Class
+ PropertyAccessorBlock

[ConstructorBlock ¥ |
Class
=+ MethodBlock

Figure 28 - type member blocks

97

7.2.8.Control structures

Basic control structure blocks are trivial descaengaf theControlStructureBlock
class. The ControlStructureBlock is a CodeBlock with an additional
KeywordLabel in the title line. Here is, for example, an impkmation of the

WhileBlock , which represents avhile ” loop:

public class WhileBlock : ControlStructureBlock

{
public WhileBlock() : base("while")
{
{His.HMembers.Add(Condition);
}
private ExpressionBlock mCondition = new Expressio nBlock();
public ExpressionBlock Condition
{
get { return mCondition; }
set { mCondition = value; }
}
}

This is for example how the while block looks like:

while true =

7.2.9.StatementLine

The inheritance hierarchy of theStatementLine class is the following:
StatementLine [> CodeLine [> TextLine [> TextBoxBlockWithCompletion >
TextBoxBlock [> Block . This hierarchy is deliberately so deep, becatisgsés the
concept of double derived classes — one can almagst a new subclass at the necessary

position in the hierarchy.

But overall, theStatementLine is just a textbox, a line of code, which additibna
tracks context information about the statement deedited. For this, it has the
Statementinfo property of type IStatement . All the information is being
encapsulated there. Currenthgtatement is only used to find out, if the statement

actually contains a local variable declaration:

98

A

Class
+ TextBoxBlockWithCompletion
| o

() 1CSharpBlock
1

‘: TextLine

CodelLine
Claz=
+ TextLine

A

() IReparsable
|

€4

StatementLine ¥ | " Statementinfo | IStatement
Claz= | Interface
+ Codeline ‘

j:‘ LocalVarmablaDaclaration

| VariableDeclaration

| Claz=s

" LocalVariableDeclaration

() IEnumerable<Variable>

It also declares thReparse() method which updates the statement informationgutie

language service described later:

public void Reparse()

{ LanguageService Is = LanguageService.Get(this);
if (Is I= null && Is.Parser != null)
{ Statementinfo = Is.Parser.ParseStatement(this. Tex
}
else
{
Statementinfo = null;
}
}

7.2.10.ICSharpBlock and Visitors

t);

ICSharpBlock is an interface which is implemented by all blogkshe CSharpBlocks

project. This interface declares the oAbceptVisitor method:

99

void AcceptVisitor(IVisitor visitor);

which is used in thevisitor design pattern to apply some external operatioth&
implementors ofCSharpBlock . This is how an operation encapsulated\liyitor IS

applied to the entire block family.

The best example for a block visitor is thettyPrinter class. It contains a number of
overloads of th&/isit method with different parameters. Here is an exarfgy thefor

loop:

public override void Visit(ForBlock block)

{
Writelndent();

Write(block.Keyword.Text);
Write("(");
Write(block.Forlnitializer. Text);
Write("; ");
Write(block.ForCondition.Text);
Write("; ");
Write(block.ForincrementStep.Text);
WriteLine(")");

StartBlock();
VisitContainer(block.VMembers);
EndBlock();

7.3.Dynamic help

All of the C# blocks define the readonlyelpStrings property of type
IEnumerable<string> . Each block redefines this property to return soexe strings to
describe the block. These strings can be shownetaiser of the editor, for example, when

a block is selected.

7.4.LanguageService

The LanguageService class is the port through which the structuredoediomponent
communicates with its host environment. This isaaebclass, which defines, but does not
implement the functionality, which the editor neddiscode completion. When integrated
into an IDE or other host environment, tl@deUnitBlock.LanguageService

property is set. The editor can check, if thaguageService is notnull , it means the

100

host has provided some implementation of theguageService class and that the

editor can use it to show code completion.

The reason why LanguageService is a class andnnioiterface is a conscious
design decision. For a good argumentation of #es[EDG], page 77.

One of the applications of the language servigeaising local variable declarations and
method parameters. For convenience reasons, thadga service has been split into two
parts — the general part represented by LifagguageService class, and the special

parsing part represented by thHearserService class. EachLanguageService

references itParserService part. TheParserService class provides two virtual

operations:

public virtual IStatement ParseStatement(string sta tementText)

{ return null;

}

public virtual ParameterList ParseParameters(string parametersText)
i return null;

7.5.ClassNavigator algorithms

Having the language constructs in a well accesgreke structure has many advantages.
The algorithms of operating on these constructsoimec straightforward, because the
programmers don’t need to concentrate on the gagsant anymore. There are no lines of

text, so one can operate on pure concepts.

7.5.1.Determining parent members and types

There are numerous methods to determine, what nréypee a given block is in. For

example, let's consider tl@ndContainingMember ~ method:

101

public static ContainerBlock FindContainingMember(B lock block)
{
ContainerBlock current = block.Parent;
while (current != null
&& !(current is MethodBlock)
&& !(current is PropertyBlock))

{
}

return current;

current = current.Parent;

7.5.2.Harvesting local variables

“Harvesting” is a process of finding all local vanies accessible from the current
statement. The title of the algorithm was inspibgdthe notion of “moving forward and
gathering necessary stuff on the way”. The vidipiicope rules can be encoded in the

following recursive definition:

A variable is visible for a block, if its declarati precedes the block in the same
children list or if a variable is visible for itjgarent block.

public static IEnumerable<Variable> FindAccessibleV ariables(Block point)
{
List<Variable> foundVariables = new List<Variable> 0;
AddAccessibleVariablesStartingFrom(foundVariables, point);

return foundVariables;

102

private static void AddAccessibleVariablesStartingF rom(
List<Variable> vars, Block point)
{

while (!(point == null
|| point is MethodBlock
|| point is PropertyAccessorBlock))

{

while (point = null)
AddAccessibleVariableDeclaration(vars, point);
/I jump out when we reached the first statement
/I (Dijkstra’s loop-and-a-half problem)
if (point.Prev == null) break;
point = point.Prev;

}

/I jump to the parent statement and continue sear ch from here
point = point.ParentParent;

}

private static void AddAccessibleVariableDeclaratio n(
List<Variable> vars, Block node)
{

StatementLine varDecl = node as StatementLine;
if (varDecl != null && varDecl.LocalVariableDeclar ation != null)

foreach (Variable var in varDecl.LocalVariableDec laration)
vars.Add(var);

7.6. Stand-alone editor window

For test purposes, a speci@BharpEditor project has been developed to test the
structured editor component in an almost empty.hHoss a simple dialog which hosts a

ViewWindow and aCodeUnitBlock displayed in thi&/iewWindow :

103

JSi[=] 3| E GenoratedCodeviewer M= 3

i [Hello World |[F1Context Help || ¥? Undo Redo | lising System:
using System Collections Generic;
using System B using System. Text;

System.Collections.Generic namespace GuiLabs.Editor. Test

System.Text { _ .
public static class Program
{
namespace Guilabs.Editor.Test = public static void Main()
{
public static class Program = }

public static vold Main() =

Press [DownArrow] to select the first child block.
Press [PageDown] to move to the next block.
Press [PageUp] to move to the previous block.
Press [Delete] to delete current block.

Press [Space] to collapse the block.

202 GuiLabs Editor CSharp MethodBlock Program.

Figure 29 - CSharpEditor

This window also features the dynamic help windowicl displays the output of the
HelpStrings property of the active block. Th&eneratedCodeViewer is a window to
test the functionality of therettyPrinter visitor.

104

8. Integrating into SharpDevelop

This chapter describes the StructuredEditor adoeated for the SharpDevelop IDE. It is
an extension of SharpDevelop which allows viewing aditing .cs files in the structured
editor inside the IDE.

8.1.The SharpDevelop IDE

SharpDevelop ([SD]) is an open-source IDE for tHET Framework written in C#. It was
carefully chosen as the best suitable host IDEtHer purposes of this work. The other
candidate would be Microsoft Visual Studio 2005 [y, but it's not easily extensible
architecture couldn’'t compete with easily extersilaind well-factored architecture of
SharpDevelop. A problem with Visual Studio is thtadoesn't currently provide easy
integration scenarios for access to the parse,toe@smon project system and language
services for third-party packages. The C# comjsiet easily reusable and extensible and
doesn’t provide a clean API surface. On the coptri@harpDevelop gives its Add-Ins very
comfortable access points to all internal datacttines and API surface. Final reason to
choose SharpDevelop was the availability of itdlyffmanaged) source code, which is, as

always, the best documentation.

105

8.2. Architecture

The source code of SharpDevelop consists of 60r6jéqis grouped in three layers. The
first layer, “Libraries”, consists of 5 independehibrary projects, which are used
throughout the rest of the code. The second layajn”, consists of 6 projects which
constitute the basic IDE itself. The third layeAdtiIns”, contains pieces of functionality
which add value to the IDE shell.

SharpDevelop could be described as a “microkeri2E. The core of the IDE is a very
lightweight shell (application framework), whichogwdes almost no user functionality,
except for means to easily integrate custom funatity provided in external packages
called add-ins. All functionality pieces, such & tdebugger, component browser, C#
language service, forms designer etc. are all demvias add-ins, which can be plugged

into the IDE by simply copying files into thddin folder.

ClassEditor FormsDesigner XmlEditor

StructuredEditc

CSharpBinding Debugger

A

DOM

Core >=(§harpDevelop
y

WinFormsUl NRefactory TextEditor

>/

! This and other references to SharpDevelop impyvérsion from May 6, 2007, SharpDevelop 3.0, iexis
2510

106

8.2.1.NRefactory

NRefactory is the most relevant library for our poses: it defines the common AST data
structure, as well as scanners, parsers, prettyepsi and other visitors for the C# and
VB.NET languages. We will only use the C# parttpfaithough the VB.NET part of it is

implemented just as well.

The scanner (called here “lexer”) and the parserb&ing generated using the Compiler
Generator Coco/R The C# grammar is described in an attributed grantile (cs.atg).
The parser produces an AST tree as its output, Wiéhroot in an instance of the
ICSharpCode.NRefactory.Ast.CompilationUnit class. All nodes of the AST
(including the compilation unit itself) inherit fno the AbstractNode class and

implement théNode interface.

When we talk about the AST, it is important to idigtiish two totally different
trees. First, an inheritance tree describes what él8ssesinherit from what
other AST classes (at design time). Second, arcobjee describes what AST
nodeobjects are contained within a given AST node object (atime). These
two trees may not necessarily coincide. The gramspacifies, what node
objects can be contained within what node objects.

Here are some classes to demonstrate how the A8ddsled at design time:

* NamespaceDeclaration class models a namespace. It inherits directiy ftoe

AbstractNode class and introduces a string property for theesgpace name.

* TypeDeclaration represents a declaration of any of the 5 .NETdyfiecould be

a class, a struct, an interface, an enum or a digeg

* TypeReference represents any type, which could be return typa wfethod or a

type of a variable. This includes array types a@dlegic types.

e MethodDeclaration and PropertyDeclaration model methods and

properties correspondingly.

! Copyright (c) 1990, 2004 Hanspeter Moessenboedkiyvedsity of Linz, Austria; extended by M.
Loeberbauer & A. Woess, Univ. of Linz with improvenis by Pat Terry, Rhodes University

107

Also, the NRefactory library provides a set of tosiclasses, which represent operations
on the AST data structure that are implementedratgdg (see also theisitor design
pattern). We will need to implement our customteisthat walks an AST tree and builds a

tree of blocks out of it.

8.2.2.ICSharpCode.SharpDevelop.Dom

SharpDevelop maintains information about all typed members declared in the opened
project as well as referenced projects. This infdram is mostly used for the features of
the IDE that make it “intelligent” (code-aware). &hmost important one is code

completion: displaying a context-aware drop-doven dif types and type members directly

as the user is typing.

The type information for each project is storedspecial data structure called DOM
(document object model). DOM is another importasthponent of the IDE, which resides
within the Main layer. The main purpose of DOM @sdupport code completion and to

share project information between different compsef the IDE.

The DOM is another tree-like data structure like MRefactory AST, but there are some
differences. The DOM is used to model only higheel (interprocedural) language
constructs, like class, member, parameter (it doesver statements and expressions).
Another difference is in the fact that the DOM tiseresolved (type references actually
link to type declarations), whereas the AST treangesolved. This is because an AST is
created as a stand-alone file and the parser doésww about other types and
declarations. The DOM, on the contrary, is createdontext of the project and knows

about the project content.

This peculiarity explains why the DOM is used as tlentral data structure throughout the
SharpDevelop IDE: it is a greatest-common-divistiatt binds together different
components. A DOM tree can be produced from maifferdnt sources. The first is a
source file, which is being parsed to produce th&TA Then, a special
NRefactoryASTConvertVisitor converts the AST to DOM. While being converted,
the tree is actually being resolved, i.e. type nerfees are being introduced to type

declarations.

Another DOM source is reflection. It extracts typed member information from

referenced assemblies. We will create a DOM stractut of the blocks hierarchy to

108

provide the rest of the SharpDevelop with informatabout what classes, members and

parameters have been defined inside our structdidr.

We use the AST tmput data from the outside world into our structuredaed
The existing text source is parsed and the ASEeslio create the blocks tree.

On the contrary, we use the DOM datput data from the structured editor to
the ourside world, to tell other components whatehae defined within our
structured editor.

8.2.3.Background compiler

Normally, when editing a program using the Sharpiay text editor, a background
compiler runs in a separate thread to keep the UMPNb date. The background compiler
parses the current text buffer to obtain an AST etreand applies
NRefactoryASTConvertVisitor to build a DOM tree aftit. A DOM tree has its root in
an object of typéCSharpCode.SharpDevelop.Dom.ICompilationUnit

We'll call “compilation unit” the DOMICompilationUnit , and not the
AST CompilationUnit

It is worth mentioning, that for each opened filtcompilation units are maintained: the
valid compilation unit and the most recent commlatunit. When the user is currently
editing the text buffer, the contents of the filaynbe syntactically incorrect, and as a result
the background compiler cannot retrieve informatout the file being edited (compile
errors). Nevertheless, when the user is editingesother file, he/she can still use the
constructs defined earlier in the valid compilationt. Thus, each valid compilation unit is
always older than the most recent compilation uMhen the contents of the file can be
parsed without errors, both compilation units &aeegame.

The background parser was implemented in SharpDpuvel retrieve information about

the program being edited in the background. Pargiegprogram is a lengthy operation
and would considerably slow down editing if the gnaim needed to be reparsed after
every key pressed. To let the user type quicklyneut waiting for the file to be parsed), a
background thread is used, which parses the fileetween user edits. The advantage of

this is that the user can type as fast as she/meswethout waiting for the parsing to

109

finish. The disadvantage is that the project infation (DOM) is always some seconds old

during typing, and may not reflect recent changa®duced by the user.

8.3.SharpDevelop add-in

Now we describe the means by which the structudgrecomponent was integrated into
SharpDevelop. We have defined the StructuredEdimmject (a C# .dll) within the

“Addins ” layer of the SharpDevelop source code.

An add-in can be designed without having accesbédSharpDevelop source,
but it is convenient to have both in the same smiut

The add-in project depends on both SharpDeveloptl@dstructured editor component

described in previous chapter. It is noteworthyt teither SharpDevelop depends on the
structured editor, nor the structured editor depemsh any of the SharpDevelop

components — they are both totally independentacheother. Thus, the StructuredEditor
add-in serves as glue that binds together Sharpdewnd the StructuredEditor, so that
they interoperate with each other:

StructuredEditor ac-in

/\

SharpDevelo CSharpEditc

\ 4

Structured editor framewc

The only file that distinguishes the project fronyather .dll is the StructuredEditor.addin
file in XML format. It contains instructions for ¢hSharpDevelop core how to load the
addin and what parts of the IDE it defines:

110

<AddIn

name = "StructuredEditor"
author = "Kirill Osenkov"
url = "http://www.osenkov.com/diplom"

description = "A structured source code represent

<Runtime>
<Import assembly = "GuiLabs.Editor.AddIn.dll"/>
</Runtime>

<Path name = "/SharpDevelop/Workbench/DisplayBind

<DisplayBinding
id = "StructuredEditorBinding"
type = "Secondary"
class = "GuiLabs.Editor.AddIn.StructuredEdito
fileNamePattern = "\.(cs)$" />
</Path>
</AddIn>

ation">

ings">

rDisplayBinding"

The most important part is the name of the assemdliljile to load. Also, it specifies that

a new display binding is added to every .cs filedigplay binding is a representation for
documents. Every document in SharpDevelop can hwarey pages (windows) associated
with it. There is one primary display binding andspibly many secondary display

bindings. Our structured editor will be a seconddisplay binding which uses the normal

C# plain text editor as the primary display bindiWgsually, it will look like the following:

111

5'. TestProject - SharpDevelop !Elm
File Edit View Refactor Project Build Search Tools Window Help
NEFEEE X BB) 3 P Defaultlayout =| 2% = O & 5 & O

o

ﬁ /" Main_cs ~ X | Projects L 3¢
Z |88 TestProject MainClass [] | [= [Solution TestProject
T hsing System; = 277 TestProject

2 using System.Collections.Generic; @3 References

3 [in

4 namespace TestProject &3 obj

5 I A Assemblylnfo.cs

148c class Mainclass =W 0 - % EnumTest.cs
- E 5 | A InterfaceTest.cs
*: = public static void Main(string[] args) U 1 I) Main.cs
9 [] MembersTest.cs

estProject. csproj
i TestProject.sin

Console.WriteLine ("Hello World!"™);

11 }

public void Bla()
{

L
I
[S T T
{11
il

if(5>0x12)

{
int i = 0;

I-— Fonmncd (ahnae o~ 4 Moo WY A
4 [»

S)

Source | Structured Edior EEFEeEPFRE
[_‘3 Errors E QOutput]ﬁ Task List I_il Definition View]: Search Results
startpage://project/0 11 coll ch1 INS.:

Figure 30 - C# display binding (primary)

The main document window in the middle of the IDEthe primary C# view of the
Main.cs file. Below this window there are two taBsiurce and Structured Editor. Source
displays the primary C# binding, while Structuredit&r displays our integrated structured

view of the same program:

112

#8 TestProject - SharpDevelop _ O] x|
File Edit View Project Buld Debug Search Tools Window Help
O E FEE| % ; = . | Default layout = =0 & 83 & P .
ﬁ ~Main.cs*® ~ x | Projects o x
o I EE N
2 using Systerd = T |ll| = [Solution TestProject
— system.Collections.Generic =-ZA TestProject
=-(= References
namespace TestProject B B
-
L | I 4 Assemblyinfo cs
class MainClass =B & EnumTest.cs
----- 4 InterfaceTest cs
public static void Main(string[]l args) = 4 -] Main.cs
Console.WriteLine ("Hello world!™); || & MembersTest.os
--------- i TestProject.csproj
s 23 SRR || I i TestProject.sin
puplic void Bla() =) TestProject.suo
if 5 > 18 =
int i = 0;
foreach char ¢ in "wow" H
int § = c.GetHashCode();
i+=73; B
Source Structured Editor |] |A 2 (@ E1L LS = R G
[_“d Errors [EOutput]il Task List I_E[)eﬁn'rlk}n View]_:l Search Results]
startpage://project/0 11 collT ch1 INS.:

Figure 31 - Structured Editor display binding (secadary)

8.4.Round-tripping

In the moment when we switch from the Source to $teictured Editor view, the
following happens. First, the add-in parses tha@®gode of the document being edited
and produces the AST out of it. Then, a speRiatksFromAST Visitor walks the AST
tree and builds the tree of blocks out of it (wWilootBlock as the root). Then, this
RootBlock is loaded into theViewwindow which is hosted on the surface of the

secondary display binding.

Every time the user edits the block structure (adteery transaction is being recorded by
the ActionManager of theRootBlock), theDomFromBlocksBuilder visitor walks the
blocks structure and produces the DOM tree outt.offThe DOM tree is sent to the
SharpDevelop project service to notify the envireninof the changes we have made.
Thus, when the user opens some other file in tineesHDE, it will be possible to use
constructs just defined in our structured editohe§e constructs will appear in the

completion list at the right place.

113

It is important to note, that no background thrgadsed in this case to provide
SharpDevelop project service with the current DOMhe file. The convertion

of blocks to DOM is fast enough to happen in reatiin the main thread
directly after each user edit. That is why all thiormation about types and
members defined in the structured editor is defideto SharpDevelop

immediately and is always up to date. Thus, wegmesthe advantage of the
text editor (the user can type fast without waitfng the parser to finish) and
get rid of the disadvantage (unlike with the tedit@, the DOM is always up to
date now). This is an important advantage of thecgired editor caused by the
fact that the blocks tree is already “pre-parsedir®st of the parser’s work is
already done. And, there is no need to maintain ¢dampilation units for one

file.

Another advantage of this approach is that evepiifie language constructs are
in a syntactically incorrect state (e.g. name migpsi the method will still
correctly return valid information about the remaintypes and members. A
parser-based approach would not be able to fingisimpg of the remaining
constructs once it encountered a syntax errohigrespect, a structured editor
is more stable and robust than a text editor.

When the user switches back from the structuretbediew to the primary source view,
the PrettyPrinter visitor runs over the blocks tree and outputsribes automatically
formatted text of the program. This text replades ¢ld text which was there before we

opened the structured editor.

L PrettyPrinte
Text [T
Parser
\ 4
BlocksFromASTVisitor DomFrom BIocksBuiIdgr
AST ”| Blocks DOM

round-tripping

Figure 32 - conversion of data structures

The process of converting text to blocks and baatalled round-tripping. Unfortunately,

the current implementation does not preserve fdingaand comments of the source text

114

during round-tripping. Each time when the struatiueditor is opened and closed, the text

of the program is being regenerated without comsigevhitespace and comments.

It is possible (and even straightforward) to impdeinformatting-preserving
round-tripping process. The NRefactory parser a&I Aven provide useful
means for storing comments and whitespace in thE #&e (called ,tracking

specials®). However the overall complexity of thwerk didn't leave resources
to implement formatting preserving. The author usténds that formatting and
comments are crucial for all developers, and losing really unacceptable.
However, the editor being presented is just a podaoncept and is currently
not intended for use in a production environment.

As switching between two display bindings is alseadvery expensive process in the
SharpDevelop IDE, the additional performance pegnalt the round-tripping process

introduced in this thesis is negligible.

8.5.Implementation of the add-in

8.5.1.StructuredEditorDisplayBinding

StructuredEditorDisplayBinding is a class, which serves as the binding point of
the editor control inside the SharpDevelop IDE.sTblass is mentioned as the binding
class in theStructuredEditor.addin configuration file. When the add-in is loaded,
SharpDevelop core instantiates this class and @desdt as a secondary display binding
for all files with the extension “.cs”. This mears soon as any .cs file will be opened in
the SharpDevelop editor (which is the primary digpbinding), an additional tab will be
displayed underneath the main editor view. Whenutber clicks this tab, a new view of

the file will be opened.

The secondary window, where the structured prognam is displayed, is provided by the
StructuredEditorViewContent class. As soon as the secondary view is opened by

the user, the

StructuredEditorDisplayBinding.CreateSecondaryViewC ontent()

method returns an instance of BteucturedEditorViewContent class.

115

8.5.2.StructuredEditorViewContent

This class is the main part of the StructuredEditia-in. Its responsibilities include:

Converting the program text from the primary digpténding to the blocks tree of
the secondary display binding (parsing). This ised@n theLoadFromPrimary

method.

Converting the blocks tree back into text (of thenary text editor) — done by

SaveToPrimary method.

Providing theViewWindow control to place in the SharpDevelop window, where

all the blocks will be drawn.
Hosting theCodeUnitBlock object, the root of the blocks hierarchy.

Providing theRecreateDom method, which updates the DOM information of the
current file, thus letting the rest of the Sharp&ep know, what types and

members have been defined in the structured editor.

Providing theLanguageService class to the block tree. This class is mostly used
to give the editor the necessary external inforamatt requires. For example, the
language service gives the editor means to parsdrégments. As the editor is a
hybrid between pure structured editors and texbegliit displays some fragments
in plain text. The language service is used tog#rsse text fragments, to extract

information out of them and to provide code comiptetnformation for them.

Providing the code completion for statements. Agesbhents are stored as plain
text, it is necessary to parse them and to be tab#how code completion as the

user types. This is done by tReepareCompletionForStatement method.

8.5.3.CSharpLanguageService

As theCSharpBlocks component described in the previous chapter doeknow about

where it is hosted (in this case, it does know imgtlabout SharpDevelop or its add-ins), it

requires some means of communicating with its hgstnvironment. This functionality is

provided by thelLanguageService class. It serves as datade ” for the editor to

communicate with its (unknown) environment.

116

EveryRootBlock has a reference to an object of tya@guageService . If it is null
the editor assumes it is not bound to any hostingirenment, and many of the
functionality (code completion, etc.) is disabled.

The StructuredEditor add-in defines the clasharpLanguageService , which inherits
from the LanguageService class and provides everything the editor want&riow
about its environment. For example, when methodrpaters are entered in the editor, the
editor itself doesn’t know what parameters are thH®cause the editor doesn’t have a
parser (parameters are stored as a text string). CléssCSharpLanguageService
provides the parser for parameter strings, so etmeny the parameters string is changed,
the editor asksCSharpLanguageService to parse it and give back the detailed
information about the parameters. Now the editavks what parameters are inside that
string.

Here is a list of functionality provided by tliSharpLanguageService
* Providing theCSharpParserService , a helper class to parse text fragments

stored in the editor and to provide the editor witformation what is written in

those text fragments.

* Providing a list of namespaces available withindheent namespace. This feature
makes use of the SharpDevelop parser service amdcprcontents, where the

DOM information is stored.

8.5.4.CSharpParserService

CSharpParserService provides methods to convert strings to parts efABT.

Normally, the compiler API should provide this ftiooality. But the current
C# compiler being used (Microsoft csc.exe) doespnotide an API surface of
required granularity.

For example, it provides a method to create a pdrseof parametersParameterList)
out of a simple string (e.¢int a, string b, params object[] objects”). The
implementation of most such methods @sharpParserService is based on the

following steps:

117

1. Surround the input string by a dummy class dedtargthe example above could
be surrounded byclass A{void B(%){}} ", where %is the parameter string

from above.
2. Parse the whole string as if it was an independemipilation unit.

3. Find the node in the resulting AST tree which cgprnds to the source string and

return it.

In future versions of the structured editor, it htidbe possible to implement
parameter lists not as a text string, but in acstimed manner (just like the
access modifiers are implemented as blocks, andsplain text).

Samples of such structured lists of words alregupear in different software
systems. For example, many e-mailing programs sschicrosoft Outlook
allow to edit the list of e-mail addresses (in Tiee field) in a structured way: an
e-mail address can only be selected as a wholegattet can select the entire e-
mail address at once, the caret considers it aggescharacter and jumps over
it. However, more usability research has to be ootatl in this innovative area
of user interaction, which cannot take place withie scope of this thesis.

The editor also uses tl@SharpParserService to parse statements. As some statements
could actually contain a variable declaratiomt(l = 0 "), it IS necessary to extract
names and types of all variables defined withindineent statement. Once a statement has
been parsed by theSharpParserService.ParseStatement method, an instance of
the CSharpStatement class is created for the statement block beingegohr This
CSharpStatement contains information whether this statement issaable declaration,
and if yes, provides that name and type of theabdgi This information is being used later

by the editor to show the list of local variablaghe completion list for other statements.

8.5.5.BlocksFromAST Visitor

This is a typical implementation of the Visitor dgs pattern. It is used to walk the AST
tree created by the NRefactory parser and to boddesponding blocks inside the

CodeUnitBlock

The AST CompilationUnit corresponds to the CodeUnitBlock . The
NamespaceDeclaration becomes NamespaceBlock . A TypeDeclaration can
become &lassBlock , aStructBlock , aninterfaceBlock , anEnumBlock , etc.

118

8.5.6.DomFromBlocksBuilder

The DomFromBlocksBuilder class works in the opposite direction: it walke thlocks
tree and creates a DOM tree out of it. As the DOW} meeds information about the higher
language level (interprocedural, i.e. types and bess), the bodies of methods and

properties are being ignored.

A DOM ICompilationUnit is being created from theCodeUnitBlock , a

DefaultClass s being created from@assBlock , etc.

8.5.7.BlocksToDomMap

An important thing to know about conversion blocie DOM is the following.
SharpDevelop (especially the DOM structure) doekndw about the blocks classes, and
the blocks classes do not know about the DOM siraceither. However, to be able to
work with code completion, we need to know, whatND©Object describes what block in
our editor. Of course, one could introduce a diregfierence on theBlock class:
Block.MyDOMObject could just keep a reference to a corresponding DGhect.
However, we wanted to keep the blocks hierarchgpemident of SharpDevelop, so that
the editor component could also be integrated atiher IDEs in the future. This maintains

the flexibility of the architecture.

That is why an external map is introduc&tbcksToDomMap . It is actually a hashtable,
which keeps pairsBlock , DOMObject). If we want to find out, what DOM object
corresponds to some block, we just do a lookugim hashtable and the necessary object

is returned, if it exists. Otherwiseyll reference is returned.

8.6.Code completion

8.6.1.DotCompletion

DotCompletion is a helper class used to show completion listnwie user types in a
dot to show types and type members. Completion Gstiym being used inside a

StatementLine block, which represents a statement inside a péainbox.

StructuredEditorViewContent creates a new object of tymmtCompletion and

calls itsPrepare() method:

119

public void Prepare(StatementLine statementBlock)

{

}

string expression =
statementBlock.MyTextBox.TextBeforeCaret. TrimEnd("

ExpressionResult exprResult =
GetExpression(expression);

ResolveResult resolveResult =
GetResolveResult(exprResult);

ArrayList completionData =
GetCompletionData(resolveResult);

AddResolveResults(
statementBlock,
completionData,
exprResult.Context);

This method does the following:

1.

The text in the statement textbox before the casetextracted using the
TextBeforeCaret helper property. Because the user has alreadyeentiee dot,
it must be truncated from the right part of thénstr

The least complete expression is extracted ouhisf text using a mini reverse
scanner and parser. This is necessary to corrgetgrmine an object, to which the
dot operator should apply. Consider, for examplee tfollowing string:
this.SomeProperty.GetSomeOtherObject(2+3). After this dot, the code
completion engine should show members of the typ&hwis returned by the
GetSomeOtherObject method. The ExpressionFinder class of
ICSharpCode.SharpDevelop.Dom project is used to extract the least complete

expression out of a text string.

The calculated expression is resolved — the retype of the expression is
calculated. This process involves tesolver class and th&ypeVisitor class,

which are discussed later.

The list of appropriate namespaces, types, memparameters and local variables

is determined, based on the return type of theesgion.

The list of completion data is added to the comtetist which is about to be
shown for the statement textbox.

120

8.6.2.Resolving

An important part of the code completion procesthéResolver class. TheResolver

Is used to determine the return type of a givehdggression.

SharpDevelop already defines a class caN&efactoryResolver , which is used by
SharpDevelop code completion engine to resolveype of the expression to the left of
the caret. It is tightly coupled with thEypeVisitor class. Unfortunately, it was not
possible to reusERefactoryResolver andTypeVisitor ~ to resolve string expressions
from the structured editor. The reason is that letdsses rely heavily on the assumption,
that the source code to be analyzed comes fromtdiles where the position of the caret

inside that file is given in line and column coaoralies.

A pair of integer coordinates which denote line aotbmn numbers within a
text file is called aocation within the file. A pair of locations is calledregion.

Most functionality of the standard resolver accepi® numbers (line and column
numbers) to indicate position of the caret in tberse code. This information is used
inside the resolver to obtain the class and memlbare the caret currently is. This is
achieved by the following steps. An AST containgibeing and ending locations for each
node. To find the node where the caret currentlyhis resolver iterates over all nodes in
the AST and compares if the caret location liehwwithe node region. The resolver needs

this functionality to determine the current clasd anember where the caret currently is.

This is the reason why this functionality couldb& reused. The structured editor doesn’t
have any information about text positions in codeduse there is no text code. There isn’'t

even such a thing as a line of code — there asedwdlarations and language constructs.

This all led to adapting the code frakesolver andTypeVisitor for structured editing.
The position of the caret is now represented byezial class calleBlacelnCode . This
class provides all the context information the hemomight need — including the current
class and member. With a structured editor, sufdrnmation is easily obtained for every
block. Thus the architecture of the resolver isatdyesimplified and made more generic,
because the resolver doesn'’t rely on the facttti@tcode is stored as text anymore. We

could now reuse it for instance, for resolving seutode that comes from a database.

The resolver is using a parser to obtain the ASTilie expression in question and then

applies different resolving methods for each pdedijpe of the expression found.

121

9. Summary

This thesis proposes a vision which anticipatessanlution of IDEs with careful and
gradual accommodation and refinement of structeditbrs together with traditional code
editors. The hope is expressed that the archiecutDEs will be improved, providing a
clean API surface to allow full interaction withettcompiler, parse trees and language
services. The code could actually become a modet the MVC pattern, with different

views on it.

A proof-of-concept implementation of a structuretit@ is demonstrated, along with the
structured editor framework, which serves as a diation, and a SharpDevelop add-in,
which integrates the prototype structured edittw the SharpDevelop IDE.

Despite of the fact, that the editor was not tuf@dperformance (it's an experimental
prototype which should only demonstrate the genaoakibility of building such editors),
the performance of the editor turned out to beegrgasonable.

Generally, more work has to be done to compareipeoach and functionality presented
in this thesis with existing results. More usabiliesearch has to be conducted as well.
However, such comparative analysis is complex auddcnot become a part of this thesis

because of resource limitations.

Up-to-date online information about this thesisywad as links and errata, is maintained at

the websitavww.osenkov.com/diplom

122

9.1. Future research directions

9.1.1.A DSL for structured editors

The most often question that comes into mind wihanrking about structured editors — is
the language grammar hard-coded into the editorn?tlie work, the answer is yes.
Otherwise a tremendous amount of additional workildkdhave to be performed while

losing functionality and probably performance.

However, one could really think about two more agjghes to creating structured editors,
apart from hard-coding the grammar into the editor.

The first alternative is to use an editor generatdgrich is the most common approach.
Given a special domain specific language that de=trsuch editors, and an editor
generator, one could generate editors for any outdaguage. This path is tempting, but it
hides a lot of complexity and implementation limtidas. A common problem is that a lot

of language constructs have to be hand-craftedulsectihey are an exception to the rules

and not behave like other constructs.

Another way, even more futuristic, is making arerpteter, which could dynamically load
the editor description at runtime, just like XMLitxdls dynamically load XSD schemas at
runtime. However, the impression is that this wagds attention only after hand-crafted

and specially tuned structured editors have beaoaiastream.

9.1.2.Static analysis

A lot of static analysis and code querying toolsrently rely on the code stored in plain
text files. They explicitly parse the source cod®ia specialized database to be able to
extract information about the source code. Withititieoduction of structured editors, one
could probably implement a query engine, that ctdlecode metrics in realtime, without
the need to scan the database first. Or, one @uihst update the database live, without

the need to rescan the code.

One common measure for software complexity is thenlmer of lines of code. With
structured editors, other measurements may belpessor example, the number of used
language constructs, which could be more precisééerBnt code metrics are possible,

which take into account weighted combinations &fedent parameters.

123

9.1.3.Markup languages

A structured representation is possible not only éeneral purpose programming
languages, but also for many markup and modelinguages, such as HTML, XML,
VHDL, Haskell, Epigram, LaTeX etc.

For markup languages, we can classify the “streciness” of an editor in three grades:

1. Text (less structured, traditional, stream of chemas, possibly with additional

features like code completion, collapsing, etc.)

2. Structured editors (in the middle, still represetite same low-level markup
concepts as text, although on a more structuredl)le$tructured editors allow

same low-level control of every tag, but in a diéiet way.

3. WYSIWYG are most abstract, don’t directly represémjs anymore. Instead,
WYSIWYG editors provide the end-result of how theaf document should look
like.

Structured editors slightly differ from WYSIWYG ddis in a way that structured editors
(like plain text editors) display the internal stture of the document as it is whereas
WYSIWYG editors display an adapted view on thaticiure, customized for the end-
user’'s perception convenience. For example, a wosdessor doesn’t actually display
paragraphs with all attributes (alighment, font,)eéxplicitly as boxes, but instead formats
the edited document as if it were the final outpiuthe editing process.

Most viable will probably be the hybrid editors, icln take the best parts of both worlds.
For example, a hybrid between text and structurprésented in this work. A hybrid
between structure and WYSIWYG is great for docunaeiiting.

9.1.4.Domain Specific Languages

Another perspective for structured editors is dedlg the “mini-languages” — the domain-
specific languages. More research has to be dompplying structured editor technology

to creating customized highly interactive mini-edst that are fully content-aware.

A common intuition states, that if a person hasdi raw XML in an XML editor, chances

are that a specialized structured editor would betger choice for this task.

124

9.1.5.Extending the editor vs. extending the language

Usable structured editors open a totally new petspe on the design, development and
improvement of programming languages. Now it issgde to extend the language
without actually extending the language. One comtctbduce new blocks (interactive Ul
elements) for new language constructs (e.g. syotaagar), which would be internally
represented in terms of the same old language reatst Without making the compiler
backend to take care of generating code for syintacigar, one could just define new
blocks which would emit the necessary code. Oneldntueven need to change the

backend.

9.2.Drawbacks of the current implementation

9.2.1.0nly a subset of C# 1.0 is supported

Unfortunately, it was not possible to completelyplement a structured editor that fully
supports even C# 1.0 in the scope of this thesis.tl®e main goal has been reached — to
provide a proof-of-concept editor that solves mpgiblems that normally arise when
building a structured editor. Some functionalitudls as intelligent drag & drop support)

couldn’t be implemented because of time constraints

9.2.2.The necessity of round-tripping

The lack of observable AST/DOM data structures edws architecture decision, which is
not perfect. Instead of implementing the structueeldor as another View on the code
Model, the author was forced to implement rounggting between blocks and text.

9.2.3.The need for CSharpParserService

CSharpParserService is a class which parses different parts of a @uogfrom text
into chunks of AST. This class wouldn’t have beexessary at all, if the IDE provided a
clean usable compiler API surface, i.e. a set afses, methods and properties that would
allow parsing not only of whole compilation unitsyt also of arbitrary parts (such as
parameter list). Such an API surface would gresigplify parsing the text pieces of a
hybrid editor.

125

9.2.4.The need for custom resolver

The implementation of the resolver provided by $bmvelop NRefactoryResolver

and TypeVisitor) has a serious limitation. It was designed witkt-teased source code
in mind. That is why a great deal of the API suef@perates on such information as line
and column numbers. The lack of an abstract resolas the reason to refactor the
NRefactoryResolver andTypeVisitor classes to be independent of line and column

information, which turned out to be a difficult dlemge.

126

10. References

[AhoSeUl] Alfred V. Aho, Monica S. Lam, Ravi Setllieffrey D. Ullman: Compilers:
principles, techniques & tools. Second Edition, 200

[Amaya] Amaya, http://www.w3.org/Amaya- WYSIWYG and structured browser

and editor

[BoxView] BoxView — The multiview project at Portld State University,

http://multiview.cs.pdx.edu/refactoring/statememevw

[CzEI] Krzysztof Czarnecki and Ulrich EiseneckeiGenerative Programming:
Methods, Tools, and Applications”. Addison-Wesl&eading, MA, USA,
June 2000 — Chapter 11 (Intentional Programming)

[Eclipse] Eclipsehttp://www.eclipse.org

[ECMA] Standard ECMA-334: C# Language Specificati8f Edition, June 2005

[FDG] Krzystof Cwalina, Brad Abrams: ,Framework Dgs Guidelines:
Conventions, Idioms, and Patterns for Reusable .NiBfaries”, Addison-

Wesley Professional, 2005

[Fowler] Martin Fowler: ,Language Workbenches — alld¢ App for Domain
Specific Languages?*,

http://martinfowler.com/articles/languageWorkbemtinl

127

[Fowler2]

[FxCop]

[GoF]

[Grammar]

[HIP]

[IntelliJd]
[IntentSoft]

[IntentSoft2]

[IP]

[Lava]

[LOP]

[LutzR1]

[LutzR2]

Martin Fowler: “Language Workbenches in ctbn - MPS”,

http://martinfowler.com/articles/mpsAgree.htmi

FxCop: Microsoft Source Code Analysis Tool,

http://www.gotdotnet.com/team/fxcop

Erich Gamma, Richard Helm, Ralph Johnson,nJdflissides: ,Design
Patterns: Elements of Reusable Object-Oriented waodt’, Addison-
Wesley Professional

Hyperlinked ECMA C# Grammar, http://www.jaggersoft.com/

csharp grammar.html

Microsoft Research, Human Interactions in dPeonming group,

http://research.microsoft.com/projects/hip/

JetBrains IntelliJ IDEAttp://www.jetbrains.com/idea

Intentional Software Corporatiomyww.intentsoft.com

Charles Simonyi, Magnus Christerso8hane Clifford, “Intentional
Software”, an OOPSLA 2006 paper,
http://www.intentsoft.com/technology/IS OOPSLA_ 200éper.pdf

Charles Symonyi et. al. ~intentional Progranmgfi,
http://www.intentsoft.com/technology/IS_OOPSLA_200éper.pdf

Lava: an experimental object-oriented ram@plication development
(RAD) language with parameterized ("virtual") type®factoring, and

extensive static checkisttp://lavape.sourceforge.net

Sergey Dmitriev: ,Language Oriented Programgi The Next
Programming Paradigm®,

http://www.onboard.jetbrains.com/is1/articles/04la0/

Lutz Roeder: JInteractive Source Code*,

http://aisto.com/roeder/Paper/InteractiveSourceGuude

Lutz Roeder: ,Extensibility and Visualizah of Source Code Documents *,

http://www.aisto.com/Roeder/Paper/SourceCodeDoctsmnt

128

[LutzR3]

[Mozart]

[NDepend]
[Nemerle]

[NStatic]

[POS]

[ProgrTree]

[ReSharper]

[ReTel]

[ReTe2]

[SCID]

[SD]
[Semmle]

[Simonyil]

[SoftFact]

[SlickEdit]

[Subtext]

Lutz Roeder: ,, Transformation and Visualiion of Abstractions using the
IP System®,
http://www.aisto.com/Roeder/Paper/IntentionalPragrang.ppt

Concept Programming vs. Intentional Progmaing, http://mozart-

dev.sourceforge.net/cp-vs-ip.html

NDependittp://www.ndepend.com

Nemerle programming languagayw.nemerle.org

NStatic,

http://wesnerm.blogs.com/net undocumented/2007¢0&0 present.html

Eisenecker, Ulrich W.; Roeder, Lutz; Czarngkkzysztof: Programmieren
ohne Sprache. iX Magazin fur professionelle Infaiorestechnik, pp. 142-
147, November 2000.

Alexander Yurov, ProgramTréstp://www.programtree.com

JetBrains ReShargstp://www.jetbrains.com/resharper

Thomas W. Reps, Tim Teitelbaum: ,The sysiher generator: a system for

constructing language-based editors®, 1989 - Spritverlag New York

Thomas W. Reps, Tim Teitelbaum: ,The sysiter generator reference

manual“, 4th Edition, 1992 - Springer-Verlag Newrk'o

Roedy Green: ,Source Code in Database* (Jawarce Code SCID-style

browser/editor)http://mindprod.com/projects/scid.html

SharpDevelophttp://sharpdevelop.net

Semmle code querying softwdrgp://www.semmle.com

Code Generation Network: Interview withCharles Symonyi,

http://www.codegeneration.net/tiki-read article.padicleld=61

Jack Greenfield and Keith Short, withes& Cook and Stuart Kent:
“Software Factories: Assembling Applications withatteérns, Models,

Frameworks, and Tools”, Wiley, 2004

SlickEdit, http://www.slickedit.com

Jonathan Edwards: Subtduxtp://www.subtextual.org

129

[VAssist] Whole Tomato Visual Assist Xitp://www.wholetomato.com

[VS] Microsoft Visual Studiohttp://msdn.microsoft.com/vstudio

[WesnerM1] Wesner Moise: ,Whidbey may miss the nesdding revolution®,
http://wesnerm.blogs.com/net undocumented
[2004/06/whidbey may mis.html

[WesnerM2] Wesner Moise: »Graphical Source Code tdtdt,
http://wesnerm.blogs.com/net undocumented/
2004/06/graphical sourc.html

[WPF] Windows Presentation Foundatidittp://wpf.netfx3.com

All web links were accessed on May 12, 2007.

130

11. List of figures

Figure 1 — layered architecture of an IDE... o .oooiiieeeiiiiiiieci e 9
Figure 2 - compiler as a black-box for the IDE...........cccooooiiiiiiiiiiiiii e 10
Figure 3 — the editor as a black-boxX for the IDE ... 11
Figure 4 — round-tripping between the AST and IDEponents through code................ 15
Figure 5 — a structured editor directly operate$h@ASTccoeeviiiiiieeiiiiiieee e 16
Figure 6 - a possible architecture of an IDE bantiund the ASTccccceeeiveiiieeeeeenn. 16..
Figure 7 — approaching the ideal editor from défarsides.............cccceeeiiiiiiieeiiiiiiienn. 26
Figure 8 - the Hello World program in the structlBslitor..............eeeiiiiiinineeiiiiiees 36
Figure 9 - completion list inside an empty blOCK...........cccooviiiiiiiiiiiiiii e 38
Figure 10 - adding a using declaration..............coovevviiiiiiiiiiii e eeeeee e 41
Figure 11 - exiting from the using declaration...............ooooviiiiiiiiiiie e 41
Figure 12 - completion list for creating typeS..coc..uueeeeiiiii e 41
Figure 13 - container block sample.........ocooemmeeeiiiiiii e 42
Figure 14 - selecting @ fieldcoooo oo 46
Figure 15 - StateMENTS @S TEXLuuuu.t s e e e e e e e e e e e e e e eeeeeeeetbeean s a e e e e e e e 47
Figure 16 - example Of @ fOr l0OPooveeiiueieii e 48

131

Figure 17 - foreach DIOCK...........cooiiiiie e ee e e e ee e e 49

Figure 18 — Dependencies of an editor from the &@ork..............ccccceeiiieiiiiin 53
Figure 19 - a block with its siblings, parent atddren...............coooviiiiiiiiiiiiccicien. 61
Figure 20 - an example of @ UNIVErSalBIOCK .. .o« eeeeeeiiiieeeeeeeiieeeeeiiiiiiii e 70
Figure 21 - sample history of actions (two actibese been executed so far)
Figure 22 - ACION2 WaS UNUONE..........uuutummmmsssenaasaeaeeeeeeeeaeaeeeeesssssnnnnnnnnssnnnaaanns 82
Figure 23 — Redo buffer is discarded...........cccoiiiiiiiiiiiiiiiiii e 83
Figure 24 - parallel hierarchies of blocks and oalBt..................oviiiiiiiiiiiieeeee, 88
Figure 25 - completion list of an EmptyNamespaceBIla...............ccccvvviiiiiicieenn. 93
Figure 26 - defining a type incrementally.......ccc..cooiiiiiiiiiiii 94
Figure 27 — block classes that model type dectamati.................ouveeiiiiiniiiineneiss s 96
Figure 28 - type member DIOCKSoo i oo 97
T U] (=304 B O35 g F= 1 o] =To |1 (o 104
Figure 30 - C# display binding (Primary) ... 112
Figure 31 - Structured Editor display binding (SBE@Y)cccooviviiiiiiiiiiiiiiiiiiis 113
Figure 32 - conversion of data StrUCUIES. . cuueeeeeeiiviiiieeieiiicriie e eeeeeee e 114

132

